SUBJECT INDEX, VOLUME 1, 2000

EDITORIALS

• Introducing CERAPIE. G. Tsaparlis: (1) 1-3.
• Chemistry and science education versus education: A top-down and bottom-up relation. G. Tsaparlis: (1) 5-7.
• The quality of CERAPIE: Aiming to strike a balance. G. Tsaparlis: (2) 187-188.
• CERAPIE and the EC(RI)Ces. G. Tsaparlis: (3) 313-314.

0. GENERAL ISSUES IN SCIENCE EDUCATION

• Quality criteria for research papers on science education: How can they be used to improve manuscripts submitted for publication? O. de Jong, H.-J. Schmidt, & U. Zoller: (1) 27-30.
• Science teachers’ awareness of findings from education research. N. Costa, L. Marques, & R. Kempa: (1) 31-36.

1. METHODS AND ISSUES OF TEACHING AND LEARNING

• Should chemistry lessons be more intellectually challenging? H.-J. Schmidt: (1) 17-26.
• The teaching of chemistry: Who is the learner? A. Goodwin: (1) 51-60.
• On the use of concept maps at different stages of chemistry teaching. D. Sisovic & S. Bojovic: (1) 135-144.
• Mass conservation in chemical reactions: The development of an innovative teaching strategy based on the history and philosophy of science. M. F. Paixão & A. Cachapuz: (2) 201-215.
• Chemistry teaching in lower secondary school with methods based on: a) psychological theories; b) the macro, representational, and submicro levels of chemistry. A. Georgiadou & G. Tsaparlis: (2) 217-226.
• Dyslexic students in chemistry classes: Their difficulties with chemical formulae. A. Ragkousis: (2) 277-280.
• Teaching chemistry as rhetoric of conclusions or heuristic principles – A history and philosophy of science perspective. M. Niaz & M. A. Rodriguez: (3) 315-322.

2. CONCEPTS

• Travaux pratiques en chimie et representation de la reaction chimique par l’équation-bilan dans les registres macroscopique et microscopique: Une etude en classe de seconde (15 – 16 ans). A. Laugier & A. Dumon: (1) 61-75.
• Gaseous equilibria: Some overlooked aspects. C. Giomini, G. Marrosu, M.E. Cardinali, & A. Paolucci: (1) 145-149.
• Chemistry textbook approaches to chemical equilibrium and student alternative conceptions. M.A. Pedrosa & M.H. Dias: (2) 227-236.
• Primary school teachers’ views on fundamental chemical concepts. G. Papageorgiou & D. Sakka: (2) 237-247.
• Primary student teachers’ understanding of the particulate nature of matter and its transformations during dissolving. N. Valanides: (2) 249-262.
• Learners’ explanations for chemical phenomena. K.S. Taber & M. Watts: (3) 329-353.
• Primary student teachers’ understanding of the process and effects of distillation. N. Valanides: (3) 355-364.

3. CONCEPT TEACHING AND LEARNING

• Developing students’ understanding of chemical change: What should we be teaching? P. Johnson: (1) 77-90.
• How to teach the concept of heat of reaction: A study of prospective teachers’ initial ideas. O. de Jong: (1) 91-96.
• Approaching the concepts of acids and bases by cooperative learning. D. Sisovic & S. Bojovic: (2) 263-275.

4. PROBLEM SOLVING AND OTHER HIGHER-ORDER COGNITIVE SKILLS (HOCS)

• Ionic equilibrium calculations: A problem solving approach. L. Cardellini: (1) 151-160.
• Interdisciplinary systemic HOCS development – The key for meaningful STES oriented chemical education. U. Zoller: (2) 189-200.

5. ASSESSMENT

• Fixed response: What are we testing? A.H. Johnstone & A. Ambusaidi: (3) 323-328.

6. SCIENCE-TECHNOLOGY-ENVIRONMENT-SOCIETY (STES)

• Water in context: Many meanings for the same word. M.A. Pedrosa & M.H. Dias: (1) 97-107.
• Interdisciplinary systemic HOCS development – The key for meaningful STES oriented chemical education. U. Zoller: (2) 189-200.

7. NEW EDUCATIONAL TECHNOLOGIES (NET)

• Computerized molecular modeling - The new technology for enhancing model perception among chemistry educators and learners. N. Barnea & Y. J. Dort: (1) 109-120.
• Use of the Internet in the teaching of chemistry in Finnish schools: A case study. *I. Varjola*: (1) 121-128.
• Evaluation of different strategies for the effective use of the World Wide Web in the learning and teaching of university level chemistry. *P. C. Yates*: (1) 129-133.

8. ATTITUDES


9. CHEMICAL EDUCATION IN EUROPE: CURRICULA AND POLICIES

• The states-of-matter approach (SOMA) to introductory chemistry. *G. Tsaparlis*: (1) 161-168.
• The chemistry graduate destined for employment but with no experience of it. Does it make sense? *R. G. Wallace*: (1) 169-174.
• The presentation of chemistry logically driven or applications-led? *N. Reid*: (3) 381-392.

10. TEACHER EDUCATION AND TRAINING

• Towards a school of specialization for chemistry teachers in Italy: The Tuscan experience. *A. Bargellini*: (2) 303-311.

11. EXPERIMENTS AND PRACTICAL WORK

• The chemistry of photography in full daylight. *C. P. Hadjiantoniou-Maroulis & A. J. Maroulis*: (1) 175-177.
• Updated inorganic and organometallic laboratory course for junior chemistry students. *L. Szepes, A. Kotschy, & G. Vass*: (1) 179-182.
• Teaching chemometrics with photography experiments in a university-level course on experimental design. *D. Stamovlasis*: (3) 393-399.