AUTHOR INDEX, VOLUME 1, 2000


Bargellini, A. Towards a school of specialization for chemistry teachers in Italy: The Tuscan experience: (2) 303-311.


Barnea, N. (with Y.J. Dori). Computerized molecular modeling - The new technology for enhancing model perception among chemistry educators and learners: (1) 109-120.

Bojovic, S. (with D. Sisovic). On the use of concept maps at different stages of chemistry teaching: (1) 135-144.

Bojovic, S. (with D. Sisovic). Approaching the concepts of acids and bases by cooperative learning: (2) 263-275.

Cachapuz, A. (with M.F. Paixão). Mass conservation in chemical reactions: The development of an innovative teaching strategy based on the history and philosophy of science: (2) 201-215.

Cardellini, L. Ionic equilibrium calculations: A problem solving approach: (1) 151-160.


de Jong, O. (with H.-J. Schmidt, & U. Zoller). Quality criteria for research papers on science education: How can they be used to improve manuscripts submitted for publication?: (1) 27-30.

de Jong, O. How to teach the concept of heat of reaction: A study of prospective teachers’ initial ideas: (1) 91-96.

Dias, M.H. (with M.A. Pedrosa). Water in context: Many meanings for the same word: (1) 97-107.

Dias, M.H. (with M.A. Pedrosa). Chemistry textbook approaches to chemical equilibrium and student alternative conceptions: (2) 227-236.

Dori, Y.J. (with N.Barnea). Computerized molecular modeling - The new technology for enhancing model perception among chemistry educators and learners: (1) 109-120.


Georgiadou, A. (with G. Tsaparlis). Chemistry teaching in lower secondary school with methods based on: a) psychological theories; b) the macro, representational, and submicro levels of chemistry: (2) 217-226.


Goodwin, A. The teaching of chemistry: Who is the learner?: (1) 51-60.


Johnson, P. Developing students’ understanding of chemical change: What should we be teaching?: (1) 77-90.
Johnstone, A.H. (with A. Ambusaidi). Fixed response: What are we testing?: (3) 323-328.

Kempa, R. (with N. Costa & L. Marques). Science teachers’ awareness of findings from education research: (1) 31-36.
Kotschy, A. (with L. Szepes & G. Vass). Updated inorganic and organometallic laboratory course for junior chemistry students: (1) 179-182.


Maroulis, A.J. (with C.P. Hadjiantoniou-Maroulis). The chemistry of photography in full daylight: (1) 175-177.

Niaz, M. (with M. A. Rodriguez). Teaching chemistry as rhetoric of conclusions or heuristic principles - A history and philosophy of science perspective: (3) 315-322.

Pedrosa, M.A. (with M.H. Diaz). Water in context: Many meanings for the same word: (1) 97-107.
Pedrosa, M.A. (with M.H. Diaz). Chemistry textbook approaches to chemical equilibrium and student alternative conceptions: (2) 227-236.

Ragkousis, A. Dyslexic students in chemistry classes: Their difficulties with chemical formulae: (2) 277-280.
Reid, N. The presentation of chemistry logically driven or applications-led?: (3) 381-392.
Rodriguez, M.A. (with M. Niaz). Teaching chemistry as rhetoric of conclusions or heuristic principles - A history and philosophy of science perspective: (3) 315-322.

Schmidt, H.-J. Should chemistry lessons be more intellectually challenging?: (1) 17-26.
Schmidt, H.-J. (with O. de Jong, & U. Zoller). Quality criteria for research papers on science
education: How can they be used to improve manuscripts submitted for publication?: (1) 27-30.
Sisovic, D. (with S. Bojovic). On the use of concept maps at different stages of chemistry teaching: (1) 135-144.
Sisovic, D. (with S. Bojovic). Approaching the concepts of acids and bases by cooperative learning: (2) 263-275.
Stamovlasis, D. Teaching chemometrics with photography experiments in a university-level course on experimental design: (3) 393-399.
Szepes, L. (with A. Kotschy, & G. Vass). Updated inorganic and organometallic laboratory course for junior chemistry students: (1) 179-182.
Taber, K.S. (with M. Watts). Learners’ explanations for chemical phenomena: (3) 329-353.
Tsaparlis, G. Introducing CERAPIE (Editorial): (1) 1-3.
Tsaparlis, G. The states-of-matter approach (SOMA) to introductory chemistry: (1) 161-168.
Tsaparlis, G. The quality of CERAPIE: Aiming to strike a balance (Editorial): (2) 187-188.
Tsaparlis, G. (with A. Georgiadou). Chemistry teaching in lower secondary school with methods based on: a) psychological theories; b) the macro, representational, and submicro levels of chemistry: (2) 217-226.
Tsaparlis, G. CERAPIE and the EC(RI)CEs (Editorial): (3) 313-314.
Valanides, N. Primary student teachers’ understanding of the particulate nature of matter and its transformations during dissolving: (2) 249-262.
Valanides, N. Primary student teachers’ understanding of the process and effects of distillation: (3) 355-364
Varjola, I. Use of the Internet in the teaching of chemistry in Finnish schools: A case study.: (1) 121-128.
Vass, G. (with L. Szepes & A. Kotschy). Updated inorganic and organometallic laboratory course for junior chemistry students: (1) 179-182.
Wallace, R.G. The chemistry graduate destined for employment but with no experience of it. Does it make sense?: (1) 169-174.
Watts, M. (with K.S. Taber). Learners’ explanations for chemical phenomena: (3) 329-353.

Yates, P.C. Evaluation of different strategies for the effective use of the World Wide Web in the learning and teaching of university level chemistry: (1) 129-133.


Zoller, U. (with O. de Jong & H.-J. Schmidt). Quality criteria for research papers on science education: How can they be used to improve manuscripts submitted for publication?: (1) 27-30.

Zoller, U. Interdisciplinary systemic HOCS development – The key for meaningful STES oriented chemical education: (2) 189-200.