
1. INTRODUCTION

An important part of chemistry is the study of the transformations of matter through chemical
reactions. The mechanisms by which chemical reactions take place and the rates at which they
occur are central aspects of the discipline deserving study. Part of the challenge of chemical
kinetics is the unraveling of reaction mechanisms. This is a difficult problem since many mech-
anisms may be consistent with a phenomenological rate law. If the elementary processes that
contribute to mechanism are known, the macroscopic rate equations for the elementary steps are
usually assumed to be given by the phenomenological equations of mass action kinetics. These
equations express the time rate of change of chemical concentrations (chemical rates) in terms
of rate constants times products of chemical concentrations. Experimental techniques exist,
and are being developed, that are able to probe reaction dynamics at a (sub)microscopic level.
Gas phase reactions have been studied at the molecular level using crossed molecular beams for
many years (see standard physical chemistry textbooks, for example, Refs. in [1]). However,
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the majority of chemical and biochemical reactions take place in the condensed phase or other
complex environments. Solution phase reaction mechanisms can be intricate and may depend
in an intimate way on the solvent. Femtosecond optical techniques [2] and other spectroscopies
and microscopies are being used to study reactions in liquids and on surfaces [3] at the micro-
scopic level. Such techniques are providing a great deal of insight into how reactions take place
on microscopic scales and information on how phenomenological macroscopic descriptions may
break down. The challenge for theory in this area is to provide a theoretical underpinning for
description of chemical reactions in the condensed phase. These theoretical descriptions may
then form the basis for the construction of algorithms for the simulation of reactive dynamics
and the computation of chemical rate constants.

Probably the most well-known phenomenological theoretical treatments of condensed phase
reactions are Smoluchowski’s [4] diffusion equation approach for diffusion-limited reactions and
Kramers’ [5] Fokker-Planck equation treatment of barrier crossing dynamics. [6] Both of these
approaches account for solvent effects through friction or diffusion coefficients. Many current
approaches adopt a more molecular point of view and attempt to take into account specific
details of the static and dynamic effects of the solvent on the reactive event. Usually, such
a program must be implemented through the use of molecular dynamics simulation methods
since this is the only way one can treat the details of the intermolecular forces giving rise to
both the reactive events and solvent effects on the reaction. In most studies of condensed phase
systems, model effective potentials are used to describe the interactions among species and
a considerable effort has been devoted to their construction. [7] For small systems it is now
possible to use quantum density functional methods to compute the interaction potential in the
course of a molecular dynamics simulation and thereby obtain a more realistic treatment of the
intermolecular interactions. Methods of this type are especially appropriate for situations when
chemical bonds are made or broken.

Since reactive events occur on long time scales one cannot simply carry out a molecular
dynamics simulation on a reactive system and hope to see a sufficient number of reactive events
to be able to compute the reaction rate. For example, a naive method to compute the rate of
a chemical reaction is to simply count how many reactants or products are formed in certain
time. Consider a reaction A ⇀↽ B and suppose one has chosen some microscopic definition for
the A and B species. Then one may carry out a molecular dynamics simulation and count the
number nA→B of reactive events that occur in time t, taking t sufficiently large to observe a
large number of chemical transformations. The reaction rate constant is given by

kA→B =
nA→B
t

. (1)

Such an approach is doomed to fail in most cases since reactive events occur on too long a time
scale. Consequently, one must first formulate the statistical mechanics of reactive systems and
use the resulting expressions to devise effective simulation methods. This is the topic of this
article.

In Sec. II, the derivation of an expression for the classical rate constant is sketched. Quantum
rate constants are discussed in Sec. III, while mixed quantum-classical dynamics is the topic of
Sec. IV. The conclusions of the paper are given in Sec. V. The discussion of this subject involves
some mathematical detail and this paper is not meant to provide uninitiated readers with all
details. However, it is hoped that this brief sketch will provide readers with some insight into
the issues surrounding the theoretical study of condensed phase rate processes and whet their
appetites sufficiently to explore the background literature cited in the text.
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2. RATE CONSTANTS FOR CLASSICAL SYSTEMS

Microscopic expressions for chemical rate constants in terms of autocorrelation functions were
first derived by Yamamoto [8] in 1960 using linear response theory. These expressions have
been re-derived in various ways and form the basis for numerical calculations of rate constants
for condensed phase systems. [6, 9] A general method for the derivation of rate laws and rate
constants can be formulated using projection operator techniques. [10, 11] This method is
summarized below.

The strategy behind this type of calculation relies on the generalization of the classical theory
of Brownian motion. [12] If one considers the motion of a Brownian particle with velocity u and
mass M in a fluid, according to the phenomenological theory of Brownian motion, the Langevin
equation describing its dynamics reads,

M
du(t)
dt

= −ζu(t) + f(t) , (2)

where ζ is the friction coefficient and f(t) is a random force. The random force is taken to be a
gaussian random variable with white noise spectrum and is related to the friction constant by
the fluctuation-dissipation relation, 〈f(t)f(t′)〉 = 2kBTζδ(t − t′), where T is the temperature,
kB Boltzmann’s constant and δ(t) is the Dirac delta function. Zwanzig [13] and Mori [14]
provided a microscopic derivation of such equations, generalized to any dynamical variable, and
relaxed the condition that the random force correlations decay instantaneously as reflected by
the δ-function correlations. Such a generalized Langevin equation approach may be used to
derive macroscopic rate laws and microscopic expressions for rate constants.

The starting point for such a derivation is the Liouville equation for the evolution of a
classical dynamical variable A,

dA(t)
dt

=
∑
i

(∂H
∂qi

∂A

∂pi
− ∂H

∂pi

∂A

∂qi

)
= {H,A} = iLA(t) , (3)

where the second equality defines the Poisson bracket and the third equality defines the Liouville
operator L. Since the Liouville operator does not depend on the time, the solution of this
equation is

A(t) = eiLtA(0) . (4)

In applications of the projection operator method, the dynamical variables of the system are
separated into two sets: a set of slowly varying variables and a set a rapidly varying variables.
A projection operator is constructed that projects the full classical dynamics onto subspace of
the slow variables. Let A be the set of slow variables. A projection operator onto A can be
constructed in the following way:

P = (·, A∗)(A,A∗)−1A , (5)

where the notation (., .) denotes an inner product. The inner product is defined to be an
equilibrium average and for any two dynamical variables W and V is given by

(W,V ∗) =
∫
WV ∗ρ0dΓ , (6)
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where ρ0 is the equilibrium distribution function and dΓ is the phase space volume element.
When P acts on any dynamical variable, the result is proportional to A: it projects out of the
variable the slowly varying component that is parallel to A. The complement of the projection
operator P is Q = 1− P that projects onto the space orthogonal to A.

The generalized Langevin equation is now easily written for the set A of dynamical variables
using just two pieces of information. First, since by definition P + Q = 1, we may write the
Liouville operator as iL = iPL + iQL ≡ iLP + iLQ. Second, for any operators C and D we
have the operator identity,

e(C+D)t =
∫ t

0
dτ e(C+D)τCeD(t−τ) + eDt . (7)

Then, using these results, we can write

dA(t)
dt

= eiLtiLA = eiLtiLPA+ eiLtiLQA

= eiLtiLPA+
∫ t

0
dτ eiLτ iLP e

iLQ(t−τ)iLQA+ eiLQtiLQA , (8)

where we have let C = iLP and D = iLQ. If we now substitute the definition of the projection
operator in eq. (5) we obtain the generalized Langevin equation,

dA(t)
dt

= iΩA(t)−
∫ t

0
dτK(τ)A(t− τ) + F (t) , (9)

where

• iΩ = (iLA(0), A∗)(A,A∗)−1 is termed the frequency matrix;

• F (t) = eiQLtQiLA is the random force;

• K(τ) = −(F (τ), F ∗(0))(A,A∗)−1 is the memory kernel.

Equation (9) holds for any set of dynamical variables A.

To illustrate the derivation of the macroscopic rate law, consider again the simple situation
where two chemical species interconvert,

A
kf
⇀↽
kr
B , (10)

and recall the phenomenological description of the rate of this reaction. Let the average number
of A (B) molecules in the system at time t be N̄A(t) (N̄B(t)) and their values at chemical
equilibrium be N̄ eq

A (N̄ eq
B ). The mass action rate law for this system is

dNA(t)
dt

= −kfNA(t) + krNB(t) ,

dδNA(t)
dt

= −(1 +K−1
eq )kfδNA(t) . (11)

In the second line of this equation we used the fact that δN̄B = −δN̄A and definition of the

equilibrium constant and the detailed balance condition, Keq =
kf
kr

=
N

eq
B

N
eq
A

.
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To derive this chemical rate law from the microscopic equations of motion, it is only nec-
essary to choose microscopic A variables that correspond to chemical species and substitute
these dynamical variables in eq. (9). The choice of microscopic chemical species variables can
be a difficult task and some examples will be given below. Suppose we know the microscopic
expressions for the dynamical variables NA (NB) which correspond to the number of molecules
of A (B). These variables depend in general on the positions and momenta of the particles
in the system and their average values correspond to the N̄A(t) (N̄B(t)) that enter the phe-
nomenological rate law. The deviations of these dynamical variables from their average values
at equilibrium, N eq

A (N eq
B ), are denoted δNA = NA − N

eq
A (δNB = NB − N

eq
B ). Substituting

δNA and δNB for A in eq. (9) we obtain, after some algebra, the generalized Langevin equation
for the reactive system,

dδNA(t)
dt

= −(1 +K−1
eq )

∫ t

0
dτK(τ)δNA(t− τ) + F (t) , (12)

where

• K = (F (τ), (iLδNA)∗)(δNA, δN
∗
A)−1 = (F (τ), (δṄA)

∗
)(δNA, δN

∗
A)−1 .

The frequency term in eq. (9) is zero as a result of time reversal symmetry and the random
force is given by F (τ) = eiQLτ iLδNA.

In order to obtain the macroscopic chemical rate law from the generalized Langevin equation
we must first construct the equation for the average values of the chemical species numbers. In
analogy with macroscopic chemical studies, we suppose that an initial non-equilibrium ensemble
is constructed where only the chemical concentrations are specified and all other degrees of
freedom are assumed to be in equilibrium. The average of the dynamical variable at time t
over this ensemble will be denoted by the same symbol as the average concentration in the
phenomenological law, NA(t). The average of the random force is zero in this ensemble since it
is orthogonal to the chemical species variables. Finally, if one assumes that the memory kernel
decays much more rapidly than the species concentrations, an assumption whose validity rests
on the fact that species concentrations are the only slow variables in the system, the chemical
species number may be removed from under the integral and the integral extended to infinity.
The result of these operations is the macroscopic chemical rate law,

dδN̄A(t)
dt

= −(1 +K−1
eq )
[ ∫ ∞

0
dτK(τ)

]
δN̄A(t) . (13)

By comparison with the phenomenological rate law in eq. (11), one obtains the rate constant
as the time integral of the random flux autocorrelation function,

kf =
∫ ∞

0
dτK(τ) . (14)

The rigorous definition of the rate kernel involves the propagator eiQLt that involves pro-
jected dynamics; however, usually one computes unprojected (natural) evolution where the rate
kernel is given by the same expression as for projected dynamics, but the propagator eiQLt is
replaced by eiLt. We denote the rate kernel using unprojected dynamics by K̃. Some care must
be used in the evaluation of the rate kernel when this approximation is used since the infinite
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time integral of K̃(τ) is zero. (For a derivation of this result see Ref. [15, 11]). The computation
of the rate constant rests on the existence of a plateau value. If the time scale for the decay of
the memory kernel is tmic and that of the chemical concentrations is tchem and these two time
scales are widely separated, then one can define a time t∗ such that tmic � t∗ � tchem. In such
a circumstance one may approximate the rate coefficient by

kf ≈ kf (t∗) =
∫ t∗

0
dτK̃(τ) =

∫ t∗

0
dτ (δṄA(τ), (δṄA)

∗
)(δNA, δN

∗
A)−1 . (15)

In order to illustrate the use of this formula in a simple context suppose a one-dimensional
reaction coordinate ξ(q1, q2, . . . ) is known and can be used to characterize the passage from A
to B species. We have noted that this variable may be a complicated function of the positions
of the molecules in the system. The dynamical variable corresponding to species A is NA(t) =
θ(ξ(t)− ξ‡) so that when ξ(t) < ξ‡ we have species A and species B for ξ ≥ ξ‡. Here θ(x) is the
Heaviside function. In this case the time-dependent rate constant (eq. (15) with t∗ → t) takes
the form,

kf (t) = (
1
N̄ eq
A

+
1
N̄ eq
B

)〈ξ̇δ(ξ − ξ†)θ(ξ(t)− ξ†)〉 , (16)

where we have performed the time integral to obtain this expression.

In computer simulations, the rate constant is usually computed in two steps. First, the
t = 0 value of the rate constant is calculated in the following way: suppose we consider a time
t = 0 + ε ≡ 0+ where ε is a small positive number. Equation (16) may be written as

kTSTf = kf (0+) = (
1
N̄ eq
A

+
1
N̄ eq
B

)〈ξ̇δ(ξ − ξ†)θ(ξ̇)〉 , (17)

which is just the transition state theory expression, kTSTf , for the rate constant. [9, 16] The full
time-dependent rate constant may then be expressed as,

kf (t) = kTSTf κ(t) , (18)

Here κ(t) (0 < κ(t) ≤ 1) is the transmission coefficient. The assumptions that underlie the
transition state theory (TST) are discussed in standard physical chemistry textbooks [1]. The
transition state of the reaction is found by computing the free energy along the reaction co-
ordinate (RC) ξ. From a knowledge of the free energy at the barrier top and the equilibrium
statistical averages in eq. (18) one may calculate kTSTf . One of the assumptions of TST is that
the trajectories that arrive at the barrier top with velocities directed towards the product state
will end in the product state: recrossings of the free energy barrier are neglected. For reactions
in the condensed phase this assumption often breaks down and the recrossing corrections may
change the value of the TST estimate. If the changes are too large this signals a poor choice
of reaction coordinate. Recrossing corrections are taken into account by the transmission co-
efficient, κ(t), which is computed by monitoring θ(ξ(t)− ξ‡) for a large number of trajectories
that evolve starting from the barrier top. The transmission coefficient will decay with time and
if the time scale separation discussed above exists, the rate coefficient can be determined from
the plateau value of κ = κ(t∗) and the value of kTSTf .

One of the difficulties in the study of the reaction rates is the search for a suitable reaction
coordinate. A ‘good’ RC may involve the solvent degrees of freedom in addition to the degrees of
freedom of the reacting species. Often it is a challenging problem to find such an RC. Recently,
approaches for the computation of the reaction rate without using a reaction coordinate have
been explored [17, 18].
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2.1 Example: Fragmentation of aqueous droplets containing several sodium
ions

An example of a chemical reaction is presented [19] which illustrates the two steps that are used
for the computation of the rate constant; i.e., i) the construction of a free energy profile that
gives the probability of finding the system with certain values of the reaction coordinate and
allows one to compute kTSTf and, ii) the computation of the transmission coefficient.

Consider a small droplet that consists of few hundreds of water molecules and few sodium
ions. The droplet fragments because of the repulsive interactions among the sodium ions. For

FIGURE 1: Snapshot of a cluster that consists of 180 water molecules and
four Na+ions. Large black colored spheres represent Na+, small gray spheres,
O, and light gray spheres, H. The spheres that represent Na+ are enhanced
to improve visualization.

certain ratios of number of sodium ions to water molecules the droplet may be stable for several
nanoseconds and direct MD simulations indicate that in this case fragmentation is the slowest
process in the system. Here a specific cluster size of 180 water molecules and 4 sodium ions
is considered. Fragmentation is caused by infrequent shape fluctuations. It is observed that
during the fragmentation the shape of the droplet changes dramatically as shown in Fig. 1:
an ion protrudes from the droplet while it is still connected by ‘strings’ of water molecules to
the remaining part of the droplet. A ‘good’ RC should describe the fluctuations that lead to
fragmentation. Since in these fluctuations the entire system participates, a RC is introduced
that takes into account the solvent molecules, in addition to the sodium ions. The RC is as
follows: a fictitious particle is considered that travels from one sodium ion to another. The
particle jumps from molecule i to j with probability Pij

Pij = A exp(−r2
ij/d

2) (19)

where A and d are constants determined by few trials in the simulations (typical values used in
the simulations are A = 0.1 and d = σ, σ is the diameter of a water molecule). The value of
the RC is given by the average first passage time in this fictitious transfer process. When the
cluster has a dumbbell shape with ions found in different lobes, many jumps are needed before
the fictitious particle finds a path that connects the two ions. In this case the RC has large
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value. When the cluster is compact the number of jumps and the value of the RC are smaller.
In practice the average number of jumps is found from the transition probability matrix. This
reaction coordinate treats all ions equivalently and does not restrict the number of ions that
are allowed to leave the cluster. The free energy profile along this RC for a cluster that consists
of 180 water molecules and 4 Na+ is shown in Fig. 2.

FIGURE 2: Free energy (reversible work) profile (solid line) for a cluster
with 180 water molecules that contain 4 Na+ ions. The staircase form of the
curve arises from the histogram method used to determine P (ξ), the proba-
bility density to observe a value ξ of the reaction coordinate. The error bar
represents 0.2kT . The arrows at the barrier top are schematic representa-
tions of the MD trajectories with velocities towards the products that start at
the barrier and may move to the product state or recross and return to the
reactants.

Starting from configurations at the free energy barrier top, several thousands of constant
energy MD trajectories were evolved for 30 ps. The transmission coefficient shown in Fig. 3 was
computed using eq. (18). Figure 3 shows that a plateau is reached after a transient time of 5 ps
which is the relaxation time for microscopic molecular motions. The transmission coefficient,
κ = 0.05, is given by the plateau value. The small value of the transmission coefficient indicates
that the recrossing corrections are large and consequently corrections to the TST estimate of
the rate constant are significant. Analysis of the trajectories may indicate whether the RC
describes sufficiently the fluctuations relevant to the reaction.

3. RATE CONSTANTS FOR QUANTUM SYSTEMS

While condensed phase reactions may often be described in terms of classical mechanics, there
are many instances where the quantum mechanical character of the system plays an essential
role. Examples include ammonia conformational changes that occur as a result of tunneling
processes, as well as proton and electron transfer processes. A considerable research effort has
been devoted to the study of rate constants in quantum systems (see, for example, Refs. [20]).
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FIGURE 3: Transmission coefficient κ(t) versus time for a cluster of 180
water molecules and four Na+ ions.

General expressions for quantum rate constants may be derived using projection operator meth-
ods by techniques that parallel those for classical systems. Consequently, here we simply point
out some of the differences that arise in quantum mechanics. The dynamical variables corre-
sponding to chemical species are replaced by quantum chemical species operators, ˆδNA. We
denote an operator by a symbol with a caret. The starting point of the calculation is the quan-
tum mechanical Heisenberg equations of motion for an operator Â (or the quantum mechanical
Liouville equation),

dÂ(t)
dt

= iL̂Â(t) =
i

h̄
[Ĥ, Â] , (20)

where h̄ = h/2π (h is Planck’s constant), Ĥ is the Hamiltonian operator and L̂ is the quantum
mechanical Liouville operator. One may now carry out calculations like those leading to eq. (15)
and the result is [15]:

kf =
1
ih̄β

Tr([δN̂A(t∗), δN̂A]ρ̂eq)(δN̂A, δN̂
∗
A)
−1

. (21)

It is necessary to make a few remarks about the nature of the inner product for quantum
systems. For classical systems we introduced a nonequilibrium ensemble where only the A
dynamical variables deviated from equilibrium. The average of the random force in this ensemble
was zero. We want to impose an analogous condition for quantum systems. To this end we
suppose that an external force that couples to the N̂A variable is applied to the system so that
the Hamiltonian takes the form, Ĥ = Ĥ − N̂∗AF . The nonequilibrium canonical distribution for
this system is

ρ̂neq =
e−βĤ

Tre−βĤ
. (22)

If we compute this density to linear order in the external force F we find,

ρ̂neq = ρ̂eq +
∫ β

0
dλ e−λĤN̂∗Ae

λĤ ρ̂eq , (23)
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where

ρ̂eq =
e−βĤ

Tre−βĤ
. (24)

If the inner product is defined by

(Ŵ , V̂ ) =
1
β

∫ β

0
dλ Tr(ρ̂eqe−λĤW ∗eλĤ V̂ ) , (25)

then the random force will vanish if averaged over this initial nonequilibrium distribution. More
extensive discussions of the origin of this Mori inner product may found in Refs. [21] (pp. 28-29
and 100-101) and [15].

4. MIXED QUANTUM-CLASSICAL DYNAMICS

While the quantum expressions for rate constants are the analogs of those for classical systems,
it is very difficult to carry out computations using these results except for systems with very few
degrees of freedom. Part of the difficulty stems from the fact that it is still practically impossible
to compute solutions of the time dependent Schrödinger equation for condensed phase many-
body systems. Consequently, many important solution phase reactions where quantum effects
play a role cannot be treated in this way. For example, biological systems, where the proton or
electron transfer processes that underlie much biological function take place, cannot be treated
using full quantum mechanics. As a result of these considerations, one is led to the study of
quantum-classical dynamics where certain degrees of freedom (e.g., those for the transferring
electron or proton) are treated quantum mechanically but the environment in which these
subsystems lie is treated classically. One is now faced with the problem of how to construct a
dynamics for quantum-classical systems and formulate the statistical mechanics of these systems.

Starting from the quantum mechanical Liouville equation,

dρ̂(t)
dt

= −iL̂ρ̂(t) = − i
h̄

[Ĥ, ρ̂] , (26)

the quantum-classical equations of motion may be obtained in the following way. [22, 23]
Consider a quantum mechanical system partitioned into two subsystems: the first subsystem
contains n particles with masses m and coordinate operators q̂; the second subsystem comprises
N particles with masses M and coordinate operators Q̂. The second subsystem is taken to be
an environment or bath with M � m. The passage to quantum-classical dynamics is made by
taking the partial Wigner transform of the quantum Liouville equation. The partial Wigner
transformation [24] of the density matrix with respect to the subset of Q coordinates is, [22]

ρ̂W (R,P ) = (2πh̄)−3N

∫
dzeiP ·z/h̄〈R− z

2
|ρ̂|R+

z

2
〉 . (27)

In this representation the quantum Liouville equation is,

∂ρ̂W (R,P, t)
∂t

= − i
h̄

(
(Ĥρ̂)W − (ρ̂Ĥ)W

)
= − i

h̄

(
ĤW e

h̄Λ/2iρ̂W (t)− ρ̂W (t)eh̄Λ/2iĤW

)
, (28)
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where the partially Wigner transformed Hamiltonian is

ĤW (R,P ) =
P 2

2M
+

p̂2

2m
+ V̂W (q̂, R) , (29)

and V̂W is the partial Wigner transform of the total potential energy of the system. The operator
Λ is the negative of the Poisson bracket operator,

Λ =
←
∇P ·

→
∇R −

←
∇R ·

→
∇P . (30)

The direction of an arrow indicates the direction in which the operator acts. This transformation
has served to replace the coordinate operators of the bath by position and momentum (R, P )
variables, the first step towards obtaining a classical description of the bath. Next, we scale
distances in terms of the wavelength appropriate for the mass m particles, λm = (h̄2/mε0)1/2,
where ε0 is a suitable energy unit, scale the momenta of the light and heavy particles by
pm = (mλm/t0) = (mε0)1/2 and PM = (Mε0)1/2, respectively, and scale time by t0 = h̄/ε0. The
evolution operator in the quantum Liouville equation may then be expanded in µ = (m/M)1/2

and retaining terms to first order in this quantity we find (in the original unscaled variables),
[22]

∂ρ̂W (R,P, t)
∂t

= − i
h̄

[ĤW , ρ̂W (t)] +
1
2

({
ĤW , ρ̂W (t)

}
−
{
ρ̂W (t), ĤW

})
≡ −iL̂ρ̂W (t) . (31)

The last line defines the quantum-classical Liouville operator L̂. The quantum-classical Liouville
equation describes the coupled evolution of these two subsystems. As a result of this coupling
a purely Newtonian description of the bath dynamics is not possible. Note, however, that if the
bath is absent we have the quantum Liouville equation for the quantum subsystem, and, if the
quantum subsystem is absent we have the classical Liouville equation for the bath.

The nature of quantum-classical dynamics is clarified if the evolution of the density matrix
is expressed in terms of an ensemble of trajectories. Equation (31) is independent of the basis
used to represent the quantum subsystem, and any convenient basis may be chosen to study
the evolution. We use an adiabatic basis. At each coordinate point R of the classical bath we
define the Hamiltonian

ĥW (R) =
p̂2

2m
+ V̂W (q̂, R) , (32)

whose eigenvalue problem
ĥW (R)|α;R〉 = Eα(R)|α;R〉 , (33)

yields the adiabatic states and energies. In this adiabatic basis the density matrix has matrix
elements ραα

′
W (R,P, t) = 〈α;R|ρ̂W (R,P, t)|α′;R〉.

Taking matrix elements of Eq. (31) and letting ραα
′

W (R,P ) = 〈α;R|ρ̂W (R,P )|α′;R〉, we
obtain the adiabatic representation of the equation of motion for the mixed quantum-classical
system,

∂ραα
′

W (R,P, t)
∂t

=
∑
ββ′

−iLαα′,ββ′ρββ
′

W (R,P, t) . (34)

The mixed quantum-classical Liouville operator in the adiabatic basis is,

−iLαα′,ββ′ = (−iωαα′ − iLαα′)δαβδα′β′ + Jαα′,ββ′ . (35)
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The first term on the r.h.s. is a classical evolution operator containing the mean of the Hellmann-
Feynman forces for states α and α′,

iLαα′ =
P

M
· ∂
∂R

+
1
2

(
FαW + Fα

′
W

)
· ∂
∂P

, (36)

where FαW = −〈α;R|∂V̂W (q̂,R)
∂R |α;R〉 = −〈α;R|∂ĤW (R)

∂R |α;R〉 is the Hellmann-Feynman force. If
α = α′ then

iLαα =
P

M
· ∂
∂R

+ FαW ·
∂

∂P
≡ iLα , (37)

is the standard classical evolution operator with the Hellmann-Feynman force for state α. The
second term on the r.h.s. of Eq. (35) contributes only if α 6= β or α′ 6= β′ and is defined by

Jαα′,ββ′ = − P
M
· dαβ

(
1 +

1
2
Sαβ ·

∂

∂P

)
δα′β′ −

P

M
· d∗α′β′

(
1 +

1
2
S∗α′β′ ·

∂

∂P

)
δαβ , (38)

and the quantity Sαβ is defined as

Sαβ = (FαβW − FαW δαβ)(
P

M
· dαβ)−1 = (Eα − Eβ)dαβ(

P

M
· dαβ)−1 . (39)

Here ωαα′(R) = (Eα(R)− Eα′(R))/h̄ and the non-adiabatic coupling matrix element given by

dαα′ = 〈α;R| ∂
∂R
|α′;R〉 . (40)

This term is responsible for the momentum transfer to and from the bath that accompanies
quantum transitions. The quantity Sαβ has appeared in Tully’s theory[25, 26] of non-adiabatic
surface hopping dynamics as the momentum jump that the bath particles experience when a
quantum transition occurs.

Approximate surface-hopping methods have been developed for studying non-adiabatic dy-
namics. [27, 25, 26, 28, 29, 30] The quantum-classical Liouville equation can be solved by
iteration in a power series in J in order to obtain an exact solution for the density matrix in
terms of surface hopping trajectories. [22, 31, 33, 32] The first terms of this series are,

ραα
′

W (R,P, t) = e−(iωαα′+iLαα′ )tραα
′

0 (R,P )+∑
ββ′

∫ t

0
dt′e−(iωαα′+iLαα′ )(t−t′)Jαα′ββ′e

−(iωββ′+iLββ′ )t
′
ρββ

′

0 (R,P ) + · · · . (41)

It is easy to give a physical interpretation of the terms in this solution. Figure 4 shows one
of the trajectory segments contributing to the second order term in the series solution for
density matrix. We wish to compute the value of the (αα) component of the density matrix
at phase point (R,P ) at time t. The phase point (R,P ) is evolved backward in time on the
Eα potential energy surface until time t′′ where a quantum transition to adiabatic state β
occurs. At this time the operator Jαα,αβ acts, for example, to change the state of the second
index of the density matrix, (αα) → (αβ); a corresponding continuous change occurs in the
bath momentum determined by the momentum derivative in the J operator. States α and β
are now coherently coupled. The phase point evolves backward in time on the mean of the
Eα and Eβ potential energy surfaces between time t′′ where the quantum transition occurred
and time t′ where another quantum transition takes place. During this time interval a phase
factor arising from the iωαβ factor accumulates its value and reflects the coherent evolution of
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FIGURE 4: Schematic representation of a trajectory that enters into the
computation of the density matrix.

the off-diagonal element of the density matrix. At time t′ a second quantum transition, e.g.,
(αβ) → (ββ), occurs. As before the operator Jαβ,ββ determines the nature of this transition
and specifies the momentum change in the bath. Due to this second quantum transition the
system is once again in a diagonal state (ββ). As a result of this transition back to the diagonal
state, no phase factor enters the evolution to time zero on the single adiabatic surface Eβ to
yield the phase point (R′, P ′).

The density matrix element at time t can be constructed from an ensemble of such “surface-
hopping” trajectories where all possible numbers of quantum transitions to all possible inter-
mediate quantum states at all possible intermediate times are considered. This ensemble of
trajectories provides an exact solution of the density matrix in the quantum-classical limit.
Surface-hopping methods extend treatments based on simple adiabatic dynamics. In adiabatic
dynamics the dynamics takes place on a single potential energy surface and the classical dy-
namics is Newtonian. The rate constant can be computed using the techniques discussed in
Sec. II. Often a classical reaction coordinate may be used; for example, the solvent polarization
reaction coordinate [34] has been used to study proton transfer [35] in liquid clusters.

Once the dynamics is known there still remains the problem of the computation of the rate
constant. Consequently, in addition to quantum-classical dynamics described above, one must
formulate the statistical mechanics of quantum-classical systems to obtain correlation function
expressions for the rate constant. The statistical mechanics of quantum-classical systems has
been formulated. [33, 23] The use of these quantum-classical correlation function expressions
for the computation of condensed phase rate processes is a topic of current research.

5. CONCLUSIONS

The theoretical and computational studies of condensed phase chemical reaction rates address
one of the most important aspects of chemistry and chemical physics. Although there has
been considerable progress in the field, fundamental problems remain to be resolved. For sys-
tems which can be described by classical mechanics, the dynamical description is, in principle,
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straightforward since a variety of techniques exist for simulating the classical equations of mo-
tion. However, since rate processes are often activated, the choice of a reaction coordinate
in a condensed phase system is not always evident. The energy landscape of a many-body
system may be complex with many metastable minima. The selection of a (possibly multidi-
mensional) reaction coordinate may be difficult in such cases and the free energy along this
multi-dimensional coordinate can exhibit complicated structure. Consequently, challenges for
simulation and theory remain.

Mixed quantum-classical dynamics provides a route to simulate quantum rate processes
without having to carry out quantum mechanical dynamical simulations on the entire many-
body system. The challenges in this area center around the construction of efficient simulation
methods for the quantum-classical equations of motion and the computation of transport prop-
erties, like the rate constant, for such systems. The quantum-classical equations of motions
have properties which differ from both classical mechanics and full quantum mechanics. Fur-
ther theoretical developments in this field offer many prospects for future research.

We have seen that the theoretical formulation of chemical reaction rates uses concepts from
statistical mechanics, quantum mechanics and classical mechanics. The projection methods
needed to derive rate constant expressions, while not usually taught in chemistry graduate
courses, do not require advanced knowledge and may be introduced easily as part of a physi-
cal chemistry course. Using such a formalism one may understand how the phenomenological
macroscopic laws of chemical kinetics are obtained from the microscopic equations of motion,
either classical or quantum. Furthermore, general microscopic expressions for rate constants
are obtained that can be used for either gas phase or condensed phase systems. In suitable
limits one can find well known approximate rate constant expressions, such as transition state
theory or Kramers’ theory expressions. More importantly, the autocorrelation expressions pro-
vide the basis for algorithms that can be used in computer simulations of the rate constant.
The extensions to quantum processes and, in particular, the introduction of quantum-classical
surface-hopping methods will allow one to appreciate the breakdown of adiabatic dynamics and
its effect on the reaction rate. As the field matures, it is likely that students will have access to
codes that will allow them simulate the effects of non-adiabatic in a classroom setting.
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