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ABSTRACT: Electron transfer (from bonding to anti-bonding orbitals) effects, as delocalization and 
hyperconjugation, are translated into a language referring to resonance structures of covalent and 
ionic components of bonds. These effects are presented as examples destined to familiarize students 
with the translation of molecular orbital wave functions into the chemically meaningful language of 
resonance structures. �Structural multiplication tables� are introduced as a pedagogical tool, allowing 
one to generate resonance structures in a pictorial manner. It is shown that the transfer of one electron 
from a bonding orbital,ω i,j (donor), to an anti-bonding one, ω k,l

* (acceptor), creates an odd (an 
unpaired) electron in region (i,j) and another odd electron in region (k,l); the coupling of these two 
odd electrons provides the necessary covalent component(s) of the new bond(s) between the donor 
and the acceptor. [Chem. Educ. Res. Pract. Eur., 2002, 3, 119-127] 
 
KEY WORDS:  delocalization; hyperconjugation; resonance structures; electron transfer; natural 
bond orbitals � Slater determinants 
 
 

INTRODUCTION  
 

Molecular Orbital and �Resonance� (or �Mesomeric�) theories can provide equivalent 
descriptions of various chemical effects even though use two totally different languages. The 
possibility to translate, even in freshman students, Molecular Orbital (MO) wave functions 
(Karafiloglou & Ohanessian, 1991; Karafiloglou 1992) into a language referring to usual 
covalent and ionic resonance structures is presented elsewhere (Karafiloglou & Launay, 
1998). In this context, the fundamental chemical concept of �resonance� can be looked from a 
probabilistic point of view, in which the required probabilities are expressed in terms of 
coefficients involved in the optimal superposition orbitals (Weinhold, 1999), as the usual 
MOs. Natural Resonance Theory (NRT) (Glendening & Weinhold, 1998; Weinhold & 
Landis, 2001; Glendening et al., 2001), provides also weights of resonance structures, in the 
framework of a very compact description of the chemical bonding, in which, however, one 
cannot distinguish covalent and ionic components of bonds, because each bond is treated as 
one entity.  

It is well known that transfer of electron(s) from a bonding bond orbital, ωij, (defining 
a region, i,j) to an anti-bonding one, ω*

kj (defining another region, k,l) describes the 
delocalization between π bonds or hyperconjugation (i.e. delocalization between σ, or  π and 
σ bonds) (Weinhold, 1999; Goodman et al., 1999). In general, it is admitted (Weinhold, 
2001) (without to be shown explicitly) that such transfer of electron(s) has as consequence to 
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increase the weights of resonance structures exhibiting bonds between the centers of the 
donor and centers of the acceptor, i.e. bonds of the type i-k or j-l etc. 

 Electron transfer between bonding and anti-bonding orbitals is considered within 
usual MO theory, while delocalization and hyperconjugation are often presented by means of 
resonance structure arguments within �Resonance� (or �Mesomeric�) theory. Figure 1 
presents the usual pictures of resonance structures involving the quite familiar to chemists 
�curved arrows�, which are frequently used in basic textbooks or research papers of various 
topics. This type of practice in chemistry is widely discussed in this issue by Laszlo (2002).  

Since students mainly, but not solely, cannot easily understand how transfer of 
electron(s) between orbitals can be expressed into resonance structures, in the present work 
we wish (i) translate the MO description of such electron transfer effects into resonance 
structures referring to covalent and ionic components of chemical bonds, and (ii) show the 
isomorphism between the quantum and the experimental chemist points of view concerning 
resonance structures and �curved arrows�. Furthermore, by means of the presented process, a 
student can easily realize that there is an underlying framework for some basic concepts as 
�orbital interactions�, �Slater determinants� (and �anti-symmetrization�), �Pauli exclusion 
principle�, �resonance structures� etc. 
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FIGURE  1: Electron delocalization (for a π-system) and hyperconjugation (for σ-systems) effects 
within �Resonance� (or�Mesomeric�) theory. 
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DESCRIBING  DELOCALIZATION BY  MEANS  OF  LOCALIZED STRUCTURES 
 
Let us consider that ω1,2  is the π bonding bond orbital between two atoms (1,2) of a 

π- system, as butadiene, or the σ orbital between sp3  hybrid of C and H in a  σ- system, as 
ethane, or the lone pair of nitrogen in methylamine, and ω3,4  is a similar bond orbital 
between two adjacent atoms (3,4) (see Figure 1). By using these orbitals and without 
conceptual difficulty, one can construct the corresponding anti-symmetrical wave function, 
i.e. the Slater determinant Ω1: 

 
Ω1 = │ω1,2 ω1,2 ω3,4 ω3,4 │          (1) 
 
Ω1 provides the totally localized picture of chemical bonding. Starting from this electronic 
configuration, one can establish the communication (e.g. delocalization) between bonds, by 
considering the transfer of electron(s) from one bonded region to other. For example, the 
transfer from region (1,2) to (3,4) refers to the transfer from the bonding ω1,2  to the anti-

bonding ω3,4
* , and thus the whole process can involve:  

 
(i) Transfer of one electron 
 

The transfer of an α- spin electron from ω1,2 to ω3,4
*  is described by means of the 

Slater determinant │ω3,4
* ω1,2 ω3,4 ω3,4 │, which is derived from Ω1 by replacing spin-orbital 

ω1,2  by ω3,4
* ; the transfer of a β- spin electron between the same orbitals is described by 

│ω1,2 ω3,4
* ω3,4 ω3,4 │. The transfer of one electron from ω1,2 to ω3,4

* ,  regardless to its spin, is 
described by Ω2 : 
 
Ω2 = 1

2  (│ω3,4
* ω1,2 ω3,4 ω3,4 │  +  │ω1,2 ω3,4

* ω3,4 ω3,4 │)      (2) 
 
 
(ii) Transfer of two electrons 
 

Similarly, the transfer of  two electrons (of opposite spin) from ω1,2 to ω3,4
*  is 

described by means of  the Slater determinant Ω3 : 
 
Ω3 = │ω3,4

* ω3,4
* ω3,4 ω3,4 │          (3) 

 
 Taking into account the transfer of electron(s) from region (1,2) to (3,4), the totally 
localized Ω1 can be improved by considering its mixing with Ω2 and Ω3 : 
 
Ψ(ground)   =    C1Ω1      +      C2Ω2      +      C3Ω3     +   . . .     (4) 
 
It is worth to notice that in wave function (4) one may consider all the other types of 
�excitations�, which can be generated from Ω1.  

Let us consider now as bond orbitals the well known Natural Bond Orbitals (NBOs) 
(Reed et al.,1988; Weinhold & Landis, 2001; Glendening et al., 2001); these orbitals can be 
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expressed in terms of  Natural Atomic Orbitals (NAOs) for π- systems or the Natural Hybrid 
Orbitals (NHOs) for σ- systems. If φi represent NAOs or NHOs then the bonding NBOs have 
the form 

 
ω1,2 = c1φ1 + c2φ2           (5) 
 
ω3,4 = c3φ3 + c4φ4           (6) 
 
and the anti-bonding NBOs the form (because NBOs are obtained by unitary transformations 
of φi ) 
 
ω1,2

*  =   -c2φ1 + c1φ2           (7) 
 
ω3,4

*  =   -c4φ3 + c3φ4           (8) 
 
(For example, φ1 and φ2 in butadiene are the valence pz �NAOs of the first two C atoms and 
φ3 and φ4 those of the other C atoms). 

When the usual MO wave function (in Hartree-Fock or correlated level) is known, 
then the expansion coefficients Ci involved in (4) can be expressed in terms of the known 
LCAO (Linear Combination of Atomic Orbitals) and CI (Configuration Interaction) 
coefficients (Karafiloglou, 2001). In this case the weight, Ci

2, of a given configuration, Ωi , 
can be calculated independently  from the other configurations, i.e. without to be necessary to 
generate and storage the whole determinantal basis set {Ωi} (Karafiloglou, 2001). A Ci

2  
provides also the probability of finding simultaneously electron pairs or electrons in various 
bonding and anti-bonding NBOs.  

 
COVALENT  AND  IONIC  RESONANCE  STRUCTURES  INVOLVED  IN Ωi 

 
 In order to know what is the chemical meaning and the role of each determinantal 
basis function Ωi in expansion (4), one must translate Slater determinants into a language 
familiar to chemists. For this purpose, each Ωi is developed in terms referring to covalent and 
ionic resonance structures of chemical bonds. Substituting (5)-(8) in various Ωi , one can 
decompose (Karafiloglou & Ohanessian, 1991; Karafiloglou 1992; Bachler & Schaffner, 
2000) them in terms of Slater determinants involving φi . These decompositions are obtained 
straightforwardly by recalling the very simple operational rule stating that �a MO- Slater 
determinant written in its diagonal form can be developed as if it were a simple product of 
summations�; for example, 
 
 │ω1,2 ω1,2 ω3,4 ω3,4 │=│ (c1φ1 + c2φ2)ω1,2 ω3,4 ω3,4  │  
 

  = c1│φ1 ω1,2 ω3,4 ω3,4 │ + c2│φ2  ω1,2 ω3,4 ω3,4 │   . 
 
The most simple decomposition is for Ω3, in which, applying the Pauli exclusion 

principle, we obtain:  
 

 Ω3=│ω3,4
* ω3,4

* ω3,4 ω3,4 │=│ (-c4φ3 + c3φ4 ) ( -c φ  + c φ4 3 3 4 )(c3φ3 + c4φ4 )( c φ  + c φ3 4 4 4 )│  
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= c4
4│φ3φ3 φ4φ4 │ +  c3

4 │φ4φ4 φ3φ3 │- c3
2 c4

2 │φ4φ3 φ3φ4 │- c3
2 c4

2 │φ3φ4 φ4φ3 │ 
  
Taking into account the change of the sign of a determinant by interchanging two vicinal 
columns (or rows), and the fact that c3

2 + c4
2 =1, we obtain: 

 
Ω3=(c3

4 +c4
4 +2c3

2 c4
2) │φ3φ3  φ4φ4 │ =  │φ3φ3  φ4φ4 │      (9) 

 
Therefore, Ω3 represents the fully ionic structure 1(+)2(+)3(-)4(-), i.e. a structure composed 
from the ionic components of both 2-3 and 1-4 bonds. 
 
Structural multiplication tables  
 

Let us consider now the decomposition of Ω2, which involves longer (even though 
very simple) algebraic developments. Chemistry students, who, in general, do not feel 
comfortable with long mathematical manipulations, can be rapidly disappointed. For these 
reasons we introduce the �structural multiplication tables�, as a pedagogical tool allowing one 
to simplify in a great extent the algebraic developments, and obtain the final electronic 
structures in a pictorial manner. The whole procedure is as follows: Firstly, each NBO Slater 
determinant is formally divided into two (or more) parts, as this is dictated from the spatial 
location of the involved bond orbitals. For example, │ω1,2 ω3,4

* ω3,4 ω3,4 │ is divided into two 

parts referring to regions (1,2) and (3,4): │ω1,2 ...     and      ...ω3,4
* ω3,4 ω3,4  │. The first part, 

because of relation (5) gives: 
 

│ω1,2 ...  =      c1  {│φ1 ...   }           +         c2  {│φ2 ...  }  (10) 
       .______+                               +______. 

                              1            2                             1             2       
 
The second part, because of relations (6) and (8), and taking into account the Pauli exclusion 
principle, gives: 
 
...ω3,4

* ω3,4 ω3,4  │ = c3  {  ...φ3φ3 φ4 │}        -       c4   {     ...φ3  φ4φ4 │}  (11) 
-______.                                .______-                                        

           3             4                             3             4     
 
In order to obtain the result of the decomposition of │ω1,2 ω3,4

* ω3,4 ω3,4 │, we multiply (10) 
and (11), according to the �structural multiplication table� given in Figure 2; this 
multiplication provides four Slater determinants, represented by the four electron schemes of 
Figure 2: 
│ω1,2 ω3,4

* ω3,4 ω3,4 │= c1c3  {│φ1φ3φ3 φ4 │}    -   c1c4   {│φ1φ3  φ4φ4 │}     
 
                                        + c2c3  {│φ2φ3φ3 φ4 │}    -   c2c4   {│φ2φ3  φ4φ4 │}  (12) 
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FIGURE  2:  Structural multiplication table for Ω2. Broken lines represent the covalent components 

of bonds formed between donor, 1 ________  2, and acceptor,  3 ________  4 , regions. 
 
 
The same multiplication table holds for │ω3,4

* ω1,2 ω3,4 ω3,4 │ (but inverting α- and β- spins 
in singly occupied AOs): 
 
│ω3,4

* ω1,2 ω3,4 ω3,4 │ = c1c3  {│φ1 φ3 φ3  φ4│}    -   c1c4   {│φ1 φ3 φ4φ4 │}     
 
                                        + c2c3  {│φ2 φ3 φ3  φ4│}    -   c2c4   {│φ2 φ3 φ4φ4 │}  (13) 
 
Finally, substituting (12) and (13) in (2) we obtain the resonance structures (having the form 
of spin-eigenfunctions in AO-positions) which are contained in determinantal basis function 
Ω2. These  structures are represented also by the four-electron schemes of Figure 2 . One 
must note that the structural multiplication table of Figure 2 holds for both Slater 
determinants and spin-eigenfunctions. It is noticeable that the graphical process given in 
Figure 2 (and 3) is not equivalent to the well known Rumer diagrams, which allow to 
construct linearly independent spin-eigenfunctions for a given set of orbitals (while the 
multiplication tables of the present work concern the decomposition of Slater determinants). 

Another conclusion which one can draw from the above analysis is that the transfer of 
one electron from a bonding ω1,2 (donor) to an anti-bondingω3,4

* (acceptor) creates an odd (an 
unpaired) electron in region defined by centers (1,2) and another odd electron in region (3,4); 
the coupling of these two odd electrons provides the necessary covalent components of the 
new bonds between the donor and the acceptor. This is described schematically by resonance 
structures of the right-side of Figure 1. 

In order to examine which resonance structures are involved in the determinantal 
basis function  Ω1 , we divide the corresponding Slater determinant into the following two 
parts:  
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│ω1,2 ω1,2 ...   = c1c2  {│φ1φ2 ...   + │φ2 φ1 ...}  +  c1
2  {│φ1φ1 ...} +  c2

2  {│φ2φ2 ...  } (14) 
 
  ...ω3,4 ω3,4  │ = c3c4 { ...φ3φ4 │  + ...φ4 φ3 │}  +  c3

2  {...φ3φ3 │} +  c4
2  { ...φ4φ4 │ } (15) 

 
Multiplication of (14) and (15), given in structural multiplication table of Figure 3, 

provides the resonance structures (having the form of spin-eigenfunctions in AO-positions), 
which are  contained in  Ω1. From this table one can conclude (in accord with intuition) that 
the bonding is limited in regions defined by centers (1,2) and (3,4) (both covalent and ionic 
components), and not between these regions This is described schematically by resonance 
structures of the left-side of Figure 1. 

 
WEIGHTS  OF   RESONANCE  STRUCTURES 

 
 Substituting in (4) the various Ωi by the resonance structures which they involve, one 
can evaluate quantitatively the weights of resonance structures describing Ψ(ground), 
following a process quite similar to the general method presented elsewhere (Karafiloglou, 
2001). In the present paper we present only qualitatively the trends in weights. If we are 
limited to Ω1, then the weights of resonance structures shown in Figure 3 are different from 
zero, but other structures as those of Figure 2 should have zero weights. Since wave function 
(4) is normalized to one, the inclusion of Ω2 and Ω3 in Ψ(ground) has as consequence to 
increase the weights of structures responsible for bonds between the couple of centers 1,2 and 
the couple 3,4 (e.g. bonds 2-3 or 1-4), while simultaneously decreases the weights of 
structures responsible for the chemical bonds 1-2 and 3-4.   
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FIGURE  3:  Structural multiplication table for Ω1. Broken lines represent the covalent components 
of bonds existing in donor, 1 ________  2, or acceptor,  3 ________  4 , regions. 
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Looking at chemical resonance effect from a probabilistic point of view, the above 
weights provide also the probabilities (Karafiloglou & Launay 1998; Karafiloglou 2001) of 
finding various bonding schemes between orbitals (i.e. those which are involved in each 
resonance structure) inside the considered molecule. In this context, the electron transfer 
from one region to other is characterized from the increasing of probabilities of structures 
responsible for the bonding between donor and acceptor regions, as well as the decreasing of 
probabilities of structures responsible for the bonding within both donor and acceptor 
regions. 

 
THE  ROLE  OF  QUANTUM  MECHANICAL  RESONANCE  STRUCTURES   

TO  UNDERSTANDING  CHEMICAL  REALITY 
 
 According to Laszlo (2002), when teaching chemistry one must not be limited to the 

Platonic archetypes of structural formulas. In general, structural formulas (and the associated 
resonance structures) must be viewed only as a pedagogical tool, having as purpose to 
improve the rational understanding of chemistry and its underlying logic by students; it must 
be not identified (or confused) with chemical reality. Also, the unguarded practice of �curved 
arrows� in resonance structures involves a real danger that can easily become a modern 
counterpart to medieval scholastics (Laszlo, 2002). Quantum chemistry, and precisely 
�Resonance� (or �Mesomeric�) theory can help to avoid to a great extend such a type of 
misinterpretation.  

In quantum theory, resonance structures are basis wave functions, and have the 
mathematical form of anti-symmetrized products, i.e. (linear combinations of) Slater 
determinants. Each basis function represents a certain bonding scheme between orbitals, 
corresponding to a so-called �limit� resonance structure. The molecular wave function, which 
constitutes a mathematical representation of the the molecule, can be expressed as a linear 
combination of such basis wave functions. The movement of electrons inside the molecule, as 
well as the fractional occupation numbers in atoms, can be understood from the superposition 
of these basis wave functions (representing, however, integer occupation numbers), i.e. the 
�resonance� of the corresponding limit resonance structures. For example, the movement of 
electrons involved in delocalization and hyperconjugation effects can be understood through 
the resonance of the limit structures involved in Ω2 and Ω3. The probabilistic behavior of 
these structures is a direct consequence of chemical quantum reality. Therefore, looking these 
structures from a probabilistic perspective, one can approach chemical reality and 
simultaneously preserve the useful pedagogical tool of chemical formulas. Furthermore, in 
this context, the widely used by experimental chemists �curved arrows� can be considered as 
a pictorial tool destined to describe schematically the qualitative trends in probabilities. 
 

CONCLUSION   
 

Without electron transfer, i.e. when we are limited to Ω1, there is a bonding in regions 
defined by centers (1,2) and (3,4) but not between these regions. This is presented by 
resonance structures involved in the left-hand side of Figure 1. The movements of electrons 
included in the transfer from one bonded region to another, within delocalization and 
hyperconjugation effects, are described by the inclusion of resonance structures exhibiting 
bonds between donor and acceptor. Such resonance structures are presented in the right-hand 
side of Figure 1. The necessary covalent components of these bonds are issued from the 
coupling of the two odd electrons, which are created in donor and acceptor regions (one odd 
electron in each region), by means of one- electron transfer process.  
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It is shown that delocalization and hyperconjugation effects are characterized by the 
increasing of probabilities (i.e. the weights) of structures responsible for bonding between 
donor and acceptor and the concomitant decreasing of probabilities (i.e. the weights) of 
structures responsible for bonding in both donor and acceptor regions. In this context, the 
�curved arrows� of Figure 1 can be considered to describe schematically the qualitative trends 
of these changes in probabilities. 
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