
CHEMISTRY EDUCATION: 
RESEARCH AND PRACTICE IN EUROPE 
2002, Vol. 3, No. 1, pp. 87-97 

THE PRACTICE OF CHEMISTRY EDUCATION
Science-Technology-Environment-Society (STES) 

 
 

Athinoula L. PETROU, Maria ROULIA and Konstantinos TAMPOURIS 
University of Athens, Laboratory of Inorganic Chemistry 

 
 

THE USE OF THE ARRHENIUS EQUATION IN THE STUDY OF 
DETERIORATION AND OF COOKING OF FOODS �  

SOME SCIENTIFIC AND PEDAGOGIC ASPECTS 
 
 

Received 6 July 2001 and 6 November 2001;  
revised 5 February 2002; accepted 11 February 2002 

 
ABSTRACT: Conservation and cooking of foods can be used by students and instructors to 
demonstrate a fundamental relation of chemical kinetics, the Arrhenius equation. By plotting the 
logarithms of available conservation and cooking times versus the corresponding inverse temperatures, 
apparent activation energies for both the deterioration and the cooking of foods of various 
compositions can be obtained. Such simple applications lead to meaningful results. Examples of 
deviation from the Arrhenius equation are given by plotting data (shelf-life of certain frozen food at 
various temperatures) given on the food package. A better fit is obtained by applying a second order 
polynomial regression to the data. Cooking time (lnt) vs. the inverse of temperature for five categories 
of foods is also examined and for each category there appears to be a common rate-determining step. 
Detailed results are presented for the meat category. The pedagogic aspects of the use of Arrhenius 
equation in the study of deterioration and of cooking of foods are also presented. [Chem. Educ. Res. 
Pract. Eur.: 2002, 3, 87-97] 
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INTRODUCTION � THE ARRHENIUS LAW AND ITS APPLICATION 
 

Chemical kinetics can be applied in food science for the prediction of the change in 
quality of a food as a function of time and environmental conditions (Labuza, 1984). The 
Arrhenius equation (Espenson, 1981; Katakis & Gordon, 1987) expresses the temperature 
dependence of the rate constant for an elementary chemical reaction 
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where R = 8.31 J·mol-1·K-1, the parameter A is the frequency factor which is taken as 
independent of temperature and Ea is the Arrhenius activation energy. If the value of Ea is 
greater than about 20 kJ·mol-1, it is possible that processes that involve the breaking of 
primary chemical bonds may occur (Laidler, 1972). Even complex processes (such as those 
that take place in foods during storage and cooking), may under certain conditions, obey the 
Arrhenius law within the experimental error. 

Based on the value of Ea, one can derive information about a reaction mechanism or, 
in some cases, extrapolate the data to new conditions. Extrapolation or interpolation to other 
values of temperature can be done judiciously. If, in a series of elementary processes, one 
step is much slower than the rest, Ea is the average thermal energy required to initiate the 



PETROU, ROULIA, & TAMPOURIS 88

rate-determining step of the reaction. On the other hand, there are some limitations (Labuza, 
1984) to the Arrhenius model when applied to complex systems, such as food, since at higher 
temperatures the chemical transformations may be of a different kind than those occurring at 
lower temperatures. Apart from this, there are a number of other sources of non-linearity of 
the Arrhenius plot of lnk or logk versus 1/T (Hunlett, 1964).  

In the process of preparation of food, it is certain that many chemical changes take 
place during the thermal procedure. For example, when meat is heated at around 50°C, 
breaking of intramolecular bonds occurs because of the increased molecular motion, resulting 
in the change of the folded structure of the proteins, which are thus denatured (Price & 
Schweigert, 1971; Forrest, Aberle, Hedrick, Judge & Merkel, 1975). Reactive regions of the 
molecules are consequently exposed and can participate in various intermolecular 
interactions. At around 60°C, the connective tissue sheaths collapse and shrink, pressing the 
free water in the cells, which then flows out. At temperature much higher than 70°C, the meat 
becomes very dry (Price & Schweigert, 1971; Forrest, Aberle, Hedrick, Judge & Merkel, 
1975). 

The goal of the present paper was: 
 
I. To check whether the Arrhenius or shelf�life plot for various categories of frozen food is 
linear and, if so, if it can provide reasonable conclusions when it is applied to food storage at 
various temperatures. Our study was motivated by an article (Leenson, 1999), whose 
assumption that the storage data presented on the cover of a pizza followed the Arrhenius 
equation, led to the �conclusion� that there was �a mistake in the information on the 
package� since not all the points fall on a straight line (lnt vs. 1/T). A valuable review of 
general approaches to the kinetics of food deterioration is the article by Labuza (1984), 
providing an extensive coverage of this topic. 
II. To describe the use of the Arrhenius equation in order to obtain the apparent activation 
energies for cooking foods of various compositions in an oven. Moreover we wish to deduce 
information about cooking at lower temperatures, where disintegration of useful molecules 
such as vitamins is less likely. Though we present detailed analysis for meat containing food, 
additional results are included for four other food categories: fish, cakes, biscuits and 
vegetables � pastry. 
III. To present the pedagogic aspects of using subjects of everyday life activities in order to 
introduce students to fundamental chemical principles. We have found that such simple 
applications, the experimental parts of which can be carried out in anyone�s kitchen (fridge, 
oven) while having fun, lead to meaningful results. The classroom topics presented here are 
most appropriate for introducing general chemistry students in chemical kinetics. 
 
I. THE USE OF ARRHENIUS�TYPE PLOTS IN THE STUDY OF THE 

DETERIORATION OF FOODS 
 

On the cover of the boxes containing frozen foods there is nutrition and storage 
information (Figure 1). We have used and examined seven categories of frozen foods: 
vegetables (artichoke, beans, peas, corn, carrot, onion, spinach, mixed salad, brussels sprouts, 
potatoes), fish (octopus, mullet, prawns, lobster, fish sticks, squib, sliced squib), meat 
[chicken, chicken balls, chicken liver (entrails), meatballs, chicken fillet], pies (cheese pie, 
sausage pie, spinach pie, cheese cakes, Greek cheese pie), sweet pies (Greek sweet cake, 
baklava, apple pie, cherry pie), dough (dough for pies, sweet pies, pizza dough, thin paste), 
pizzas (Italian pizza). In Table 1 data are presented (storage time and temperature) for some 
frozen foods (pizza dough, fish sticks, vegetables and chicken balls).  
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If we assume that the deterioration of the foods follows the Arrhenius equation and 
treat the storage data accordingly, we find that approximately straight lines can be drawn. The 
�deterioration rate�, u, must be constant at a given temperature T and inversely proportional 
to the storage time t, if ordinary kinetics are followed. Therefore we apply the equation  

RT
E

const
u

t aexp1
⋅≅≅  (2) 

to the data, i.e. storage time versus temperature of storage (Table 1). By taking the logarithms 
of both sides of the above equation, we get 
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From this, a linear relation between lnt and  1/T  follows. Figure 2 presents plots of lnt vs. 1/T 
for the data in Table 1. A  linear regression ( xAAy o ⋅+= 1 ) has been applied to the data 
(Figure 2). The slope of the line gives Ea/R, from which an apparent activation energy Ea for 
the �deterioration� process is calculated (see Table 1, column 6).  

Given the straight line, predictions can be made about the shelf-life of the various 
foods, which are reliable only within the experimental temperature range, whereas 
extrapolation or interpolation to other values of temperature could be made judiciously. The 
apparent activation energies deduced from Table 1, column 6th, are: 

 
Ea pizza dough = 101 kJ/mol Ea squib = 86 kJ/mol Ea fish sticks = 122 kJ/mol 
Ea vegetables = 164 kJ/mol Ea chicken balls = 131 kJ/mol 
 
Ea pizza  = 170 kJ/mol (using Leenson�s data; note that in the paper by Leenson an apparent Ea 
value of 180 kJ/mol is reported) 
 
 

 

 

 
FIGURE 1. Nutrition and storage information for two types of frozen foods used in this work (up: 
chicken meatballs, down: peas). 
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TABLE 1. Storage data (time and temperature) for some kinds of examined food (R: correlation 
coefficient; SD: standard deviation). 
 

t / days lnt θ / oC T / K 1000T-1 / K-1

 
A1 = Ea/R R  SD  

Pizza dough 
7 1.95 +5 278 3.60    

30 3.4 -8 265 3.77    
3x30 4.5 -12 261 3.83 12.17 0.9832 0.3729 

12x30 5.89 -18 255 3.92    

Squib 

1 0.0 +5 278 3.6    

3 1.1 -6 267 3.75    

14 1.95 -12 261 3.83 10.36 0.9804 0.3463 

12x30 3.4 -18 255 3.92    

Fish sticks 

2 0.69 +5 278 3.6    

7 1.95 -6 267 3.75    

30 3.4 -12 261 3.83 14.69 0.9694 0.6186 

8x30 5.48 -18 255 3.92    
Vegetables 

1 0.0 +5 278 3.6    

7 1.95 -6 267 3.75    
30 3.4 -12 261 3.83 19.78 0.9667 0.8704 

2x365 6.59 -18 255 3.92    

Chicken balls 

2 0.69 +5 278 3.6    

7 1.95 -6 267 3.75    

30 3.4 -12 261 3.83 15.76 0.9586 0.7789 

12x30 5.89 -18 255 3.92    

Pizza (Leenson, 1999) 

1 0 0 273 3.66    

7 1.95 -6 267 3.75    

14 2.64 -12 261 3.83 20.49 0.9764 0.6158 

275 5.62 -18 255 3.92    



THE ARRHENIUS EQUATION IN THE STUDY OF FOODS 

 

91

 

                                        

                                        

                                        

                                        

                                        

                                        

3,55 3,60 3,65 3,70 3,75 3,80 3,85 3,90 3,95
-1

0

1

2

3

4

5

6

7

ln
t

1000/T  (K-1)

                                        

                                        

                                        

                                        

                                        

                                        

3,55 3,60 3,65 3,70 3,75 3,80 3,85 3,90 3,95
-1

0

1

2

3

4

5

6

7

ln
t

1000/T  (K-1)

 
FIGURE 2. Plot of lnt vs. 1000/T for the data of Table 1 and their linear regression (hexagon: 
chicken balls, circle: squib, triangle: pizza dough, rhomb: fish sticks, square: vegetables). 
 

 
 
 
 

AN ALTERNATIVE INTERPRETATION 
 

By plotting the �experimental data� (lnt vs. 1/T) and applying a second order 
polynomial regression ( 2

21 xAxAAy o ⋅+⋅+= ) a better fit results, showing a clear deviation 
from the Arrhenius equation (Figure 3, Table 2). The data for all kinds of foods examined 
give Arrhenius � type plots (lnt vs. 1/T) which are concave upwards and thus the Arrhenius 
plots (lnk vs. 1/T) should be concave downwards. In Figure 4 the data obtained from the 
paper by Leenson (1999) are also plotted. 

It is thus concluded that the experimental data, i.e. the shelf - life of all the examined 
kinds of food at various temperatures, do not strictly vary linearly according to the Arrhenius 
equation. Note that in the article by Leenson (1999), in which the Arrhenius law was applied 
in the case of storage of a pizza in a freezer, the deviation from the straight line was 
interpreted as a �mistake�, whereas our alternative interpretation shows simply deviation 
from the Arrhenius law. 
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TABLE 2. Correlation coefficients of the linear (R) and second order (R, R2) polynomial regressions 
of the data of Table 1. 
 

Food xAAy 1o ⋅+=  2
21o xAxAAy ⋅+⋅+=  

 R R R2 
Pizza dough 0.9832 0.9980 0.9961 

Squib 0.9804 0.9996 0.9992 
Fish sticks 0.9694 0.9999 0.9998 
Vegetables 0.9667 0.9979 0.9959 

Chicken balls 0.9586 0.9999 0.9998 
Pizza (Leenson, 1999) 0.9764 0.9847 0.9697 
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FIGURE 3. Plot of lnt vs. 1000/T for the data of Table 1 and their second order polynomial 
regression (hexagon: chicken balls, circle: squib, triangle: pizza dough, rhomb: fish sticks, square: 
vegetables). 
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FIGURE 4. Plot of lnt vs. 1000/T for the data taken from the paper by Leenson (1999) (included in 
Table 1) and their linear and second order polynomial regressions. 
 
 
II. THE ARRHENIUS LAW AND ITS APPLICATION TO COOKING OF 

FOODS 
 

In cases where the Arrhenius law is applicable, since the rate of food preparation, v, is 
inversely proportional to the cooking time, t, one can also apply equations (2) and (3) to the 
(cooking) �experimental� data. It is expected that a straight line will be obtained from the plot 
of lnt vs. 1/T, with the slope  (Ea/R) giving an apparent activation energy Ea for the process, 
whatever its mechanism may be. Table 3 presents data (book and booklets) for the thermal 
cooking of meats of various kinds. The amount of food considered in each case was 1 kg. 
 
TABLE 3. Cooking data (time and temperature) for meats of various kinds in a kitchen oven. 

Food t / min lnt T / K 1000/T / K-1 
 

Beef steaks 
 

30 
 

3.4 
 

523 
 

1.91 
(Stuffed) duck 40 3.68 523 1.91 

Roast pork 60 4.09 503 1.99 
Pork steak (chops) 60 4.09 503 1.99 

Chicken 60 4.09 498 2.01 
Roast pork 70 4.23 498 2.01 

Poultry 60 4.09 473 2.11 
Roast goat 90 4.5 473 2.11 
Roast pork 120 4.79 473 2.11 
Roast lamb 120 4.79 453 2.21 

Beef with bacon 120 4.79 453 2.21 
Roast beef 125 4.83 453 2.21 

Duck 180 5.19 453 2.21 
Lamb (greek style) 120 4.79 450 2.22 

Duck 
 

180 5.19 435 2.3 

Pork (pieces) with vegetables 20 3.0 473 2.11 
Ribs 35 3.56 473 2.11 

Meatballs 35 3.56 473 2.11 
Chicken (pieces) with mushrooms 30 3.4 453 2.21 
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FIGURE 5. Plot of the logarithm of cooking time vs. the inverse of temperature for various meats. 
Squares: protein-containing foods (meats). Open circles: pieces of pork, chicken, ribs and meatballs. 
 

In Figure 5 the plot of the logarithm of cooking time vs. the inverse of temperature is 
presented for various meats (protein-containg foods) (see Table 3). It is observed that the 
Arrhenius model is approximately valid (protein-containing foods: meats). The plot of lnt vs. 
1/T gives a straight line with slope Ea/R. The slope of the line established by linear regression 
of the data is found to be Ea/R = 4.019 giving Ea = 33 kJ·mol-1. 
 The important thing is that the data refer to meat of various kinds, i.e. chicken, beef, 
pork, goat, duck and lamb. The cuts of meat can be thought of as a matrix of protein 
molecules and water (Ledward, Johnston & Knight, 1992). The open circles (Figure 5) refer 
to meat in pieces, such as small pieces of pork, pieces of chicken, ribs and meatballs. The 
greater the surface of the pieces of meat is, the greater the rate is, and consequently the 
cooking time decreases.  There are also data (book and booklets) referring to food with small 
surface (the opposite effect, for example whole potatoes, apples, etc.), which show greater 
cooking time than one would expect from the corresponding graph, i.e. smaller rate due to 
smaller surface. Thus, the big difference in surface causes different behaviour. According to a  
recent article (Mc Gree, Mc Inerney, & Harrus, 1999, which discusses the physics of cooking 
of steak, the rate-determining step in cooking is often the penetration of heat from the 
cooking medium through the meat to the centre, especially if the meat is thick; this behaviour 
also has to do with the volume of the pieces of meat and the heat transfer to the centre. 

Data (book and booklets) are also available for the preparation of fish of various 
kinds, cakes, biscuits and vegetables�pastry, which result in Ea fish = 27 kJ·mol-1, Ea cakes = 26 
kJ·mol-1, Ea biscuits = 24 kJ·mol-1, Ea vegetables-pastry = 20 kJ·mol-1. Fish has lower activation 
energy than a roast; it should perhaps be compared to the smaller pieces of meat, mammal 
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and fowl. Ea should be quite similar if we are correct about all animal protein being 
chemically approximately the same. 
 

DISCUSSION 
 
 We find it important to stress that the Arrhenius model and its limitations apply to 
both our studies, that is, deterioration and cooking of foods. Despite this common behaviour, 
the two treatments differ, since for each conserved food four different temperatures are given 
for four different storage times (Figure 1, Table 1); that is, for the same food, four pairs of 
values (t, T) are given and we check if these data for each distinct food obey the Arrhenius 
law, i.e. the deterioration of the certain food follows the Arrhenius law. On the other hand, 
only one temperature and the corresponding time needed for cooking is given for each food; 
that is we have to combine those pairs of (t, T) for different kinds of food to check if there is a 
common rate-determining step in the thermal behaviour of food. 
 
Deterioration of foods - Explanation  
 

It is difficult to draw conclusions about a mechanism (or mechanisms) of the 
deterioration of frozen food on storage from the shape of the curves corresponding to the data 
(t, T) presented on the back cover of the boxes containing frozen foods. The curves show a 
concave upwards behaviour, which means that the lnk vs. 1/T plots should show a concave 
downwards behaviour. According to Labuza�s review (Labuza, 1984) the most probable 
mechanism is enzymatic and microbial degradation. This could actually lead to the observed 
behaviour.  

Other reasons leading to curvature of the Arrhenius plot are (Hunlett, 1964): 
consecutive reactions with similar rate constants, consecutive steps with different activation 
energies, the occurrence of a third order reaction, alternative paths (parallel reactions) with 
different activation energies, the existence of non-chemical control (i.e. reactions involving 
systems in two or more phases which are limited at high temperatures by the rate at which the 
reactants can come together; in these cases diffusion could be the rate determining step).  

In biological reactions, another important source of non-linearity of the Arrhenius plot 
is the thermal inactivation of enzymes (Laidler, 1958). Many biological reactions (e.g. 
enzyme-catalysed reactions) have an optimum temperature at which the rate reaches a 
maximum; in these, the reaction rate increases steadily with temperature in an Arrhenius 
manner, until the thermal inactivation of the enzyme becomes more important. 

In the cases where the curvature of the Arrhenius plot is concave downwards (as in 
the cases presented here), the deterioration process could be caused by consecutive reactions 
and/or non-chemical reasons, such as the concentration of all reactants in the unfrozen water 
during freezing, since the diffusion in the solid phase is not favoured, especially at low 
temperatures. General modes of food deterioration include, according to Labuza (1984), 
microbial decay, enzymatic and non-enzymatic chemical change (lipid oxidation, vitamin 
loss, etc.). The growth of microorganisms is also of great importance in the deterioration of 
food (Leenson, 1999). 

 
Cooking of foods  - Main chemical changes and variables affecting the data 
 

Although such a simple study cannot point to the mechanism, there appears to be a 
more or less common rate determining step in each category of the examined food, since the 
results for corresponding members fall approximately on the same line (established by linear 
regression of the data). In the protein-containing foods (meat � fish), the main chemical 
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change is the denaturation of proteins (Price & Schweigert, 1971; Forrest, Aberle, Hedrick, 
Judge & Merkel, 1975), whilst in vegetables the main change is the modification of the 
(plant) cell architecture (Hulme, 1970). 

It is important that students must be informed about the variables that can affect the 
data. Although we are dealing with an approximation, all following variables must be 
considered and evaluated: 

 
a) Oven thermostats may not be accurate and temperatures may fluctuate in the course of 

cooking. The effective cooking temperature at the surface of food (meat in the case of 
the discussed data) is the temperature of the cooking medium. Within the food, and 
especially in the case of meat, the effective cooking temperature cannot be higher than 
the boiling point of water because of the water content of meat. Meat is about 75% 
water by weight (Price & Schweigert, 1971; Forrest, Aberle, Hedrick, Judge, & 
Merkel, 1975). 

b) Meat is considered �properly done� when it is heated to the temperature range 55-
70°C (130 �160°F) (Mc Gree, Mc Inerney & Harrus, 1999). 

c) Heating causes meat to lose fluid and shrink, and therefore the quantities change. 
d) A number of factors involved in cooking (i.e. portion size and shape, determining 

�doneness�, cooking temperature etc.) make this type of analysis approximate. 
e) The listed cooking times (Table 3) correspond to a certain amount of material: 1 kg 

(In Figure 5, squares: 1 kg piece, open circles: 1 kg of small pieces). 
 

CONCLUSIONS AND PEDAGOGIC ASPECTS 
 

The following conclusions can be drawn from this study: 
 

i) The Arrhenius equation can only approximately be applied to the storage of food. An 
alternative interpretation described in this article could lead to more reliable conclusions. The 
best way to obtain a shelf life for a given kind of food would be to do studies at the desired 
temperatures. This is usually not possible because it is costly and time-consuming (Labuza, 
1984), though it is necessary due to the limitations of the Arrhenius model. 
ii) For all kinds of frozen food included in the category �vegetables�, the data (t, T) are 
identical, implying similar behaviour and thus similar mechanism of deterioration. Also the 
values of the Ea are in a reasonable order, i.e. Ea fish < Ea meat < Ea vegetables. 
iii) Given the variability of meats, heat sources, surface of the cuts, it is not possible to 
generalise and deduce reliable general rules. However this phenomenological treatment 
significantly simplifies the problem and allows us to recognize some of the aspects in the 
cooking of food, such as the order of magnitude of the activation energy. Thus, the Arrhenius 
equation can be approximately applied to the thermal cooking of food. 
iv) This application of the Arrhenius equation suggests that by extrapolation we can find 
the appropriate time, t, for cooking food at low temperatures, within the limitations discussed 
above. This can be useful in cases where at low temperatures certain components are not 
destroyed, for example vitamins. 
 
Chemistry and everyday life 
 

Both the above applications of the Arrhenius equation can be used in the teaching of 
basic chemical concepts. One can teach the temperature dependence of the rate (v ≅ 1/t) by 
explaining the plots lnt vs. 1000/T and pointing out the effect of surface (�concentration�) on 
the rate (Figure 5).  
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Students are encouraged to use different kinds of food, in order to understand basic 
chemical concepts, and in this way their work becomes interesting and enjoyable, while they 
realise that chemistry is useful in their everyday life. In such activities they can work in 
groups of 2-4, and thus develop skills for cooperative work. In addition, students can be 
encouraged to analyse and discuss the results, an activity that promotes constructivist 
learning and critical thinking. 
 
NOTE ON SOURCES OF DATA: Data were collected from the covers of the boxes containing 
frozen foods. Also from various cooking books, such as �Cooking, a commonsense guide� (family 
circle), and booklets with instructions for the use of kitchen ovens. 
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