CONTENTS, VOLUME 1, 2000

Title and author	Issue	Pages
EDITORIALS		
• Introducing CERAPIE	1	1-3
• Chemistry and science education versus education: A top-down and bottom-up relation	1	5-7
• The quality of <i>CERAPIE</i> : Aiming to strike a balance	2	187-188
• CERAPIE and the EC(RI)CEs	3	313-314
G. Tsaparlis		
INVITED CONTRIBUTIONS		
Teaching of chemistry - Logical or psychological? A.H. Johnstone	1	9-15
Should chemistry lessons be more intellectually challenging? <i>HJ. Schmidt</i>	1	17-26
(<i>Report from a workshop</i>) Quality criteria for research papers on science education: How can they be	1	27-30
used to improve manuscripts submitted for publication? <i>O. de Jong, HJ. Schmidt, & U. Zoller</i>	1	21 50
(Invited research communication)		
Science teachers' awareness of findings from education research N. Costa, L. Marques, & R. Kempa	1	31-36
Interdisciplinary systemic <i>HOCS</i> development – The key for meaningful <i>STES</i> oriented chemical education <i>U. Zoller</i>	2	189-200
Teaching chemistry as rhetoric of conclusions or heuristic principles – A history and philosophy of science perspective <i>M. Niaz & M. A. Rodríguez</i>	3	315-322
Fixed response: What are we testing? <i>A.H. Johnstone & A. Ambusaidi</i>	3	323-328

RESEARCH REPORTS

Teaching lower-secondary chemistry with a piagetian constructivist and an ausbelian meaningful-receptive method: A longitudinal comparison <i>E. Zarotiadou & G. Tsaparlis</i>	1	37-50
The teaching of chemistry: Who is the learner? A. Goodwin	1	51-60
Travaux pratiques en chimie et representation de la reaction chimique par l'equation-bilan dans les registres macroscopique et microscopique: Une etude en classe de seconde $(15 - 16 \text{ ans})$ <i>A. Laugier & A. Dumon</i>	1	61-75
Developing students' understanding of chemical change: What should we be teaching? <i>P. Johnson</i>	1	77-90
How to teach the concept of heat of reaction: A study of prospective teachers' initial ideas <i>O. de Jong</i>	1	91-96
Water in context: Many meanings for the same word <i>M.A. Pedrosa & M.H. Dias</i>	1	97-107
Computerized molecular modeling - The new technology for enhancing model perception among chemistry educators and learners <i>N. Barnea & Y. J. Dori</i>	1	109-120
Use of the Internet in the teaching of chemistry in Finnish schools: A case study <i>I. Varjola</i>	1	121-128
Mass conservation in chemical reactions: The development of an innovative teaching strategy based on the history and philosophy of science $M = Pairão & A Cachanuz$	2	201-215
<i>M. F. Patxao & A. Cachapuz</i> Chemistry teaching in lower secondary school with methods based on: a) psychological theories; b) the macro, representational, and submicro levels of chemistry A. Georgiadou & G. Tsaparlis	2	217-226
Chemistry textbook approaches to chemical equilibrium and student alternative conceptions <i>M.A. Pedrosa & M.H. Dias</i>	2	227-236

Primary school teachers' views on fundamental chemical concepts G. Papageorgiou & D. Sakka	2	237-247
Primary student teachers' understanding of the particulate nature of matter and its transformations during dissolving <i>N. Valanides</i>	2	249-262
Approaching the concepts of acids and bases by cooperative learning <i>D. Sisovic & S. Bojovic</i>	2	263-275
Learners' explanations for chemical phenomena K.S. Taber & M. Watts	3	329-353
Primary student teachers' understanding of the process and effects of distillation <i>N. Valanides</i>	3	355-364
An idea of science: Attitudes towards chemistry and chemical education expressed by artistic paintings <i>C. Hilbing & HD. Barke</i>	3	365-374

RESEARCH COMMUNICATIONS

Evaluation of different strategies for the effective use of the World Wide Web in the learning and teaching of university level chemistry <i>P.C. Yates</i>	1	129-133
Dyslexic students in chemistry classes: Their difficulties with chemical formulae <i>A. Ragkousis</i>	2	277-280
Non-linear analysis of effect of working-memory capacity on organic- synthesis problem-solving <i>D. Stamovlasis & G. Tsaparlis</i>	3	375-380

THE PRACTICE OF CHEMISTRY EDUCATION: PAPERS

the use of concept maps at different stages of chemistry teaching	1	135-144
D. Sisovic & S. Bojovic		
Gaseous equilibria: Some overlooked aspects	1	145-149
C. Giomini, G. Marrosu, M.E. Cardinali, & A. Paolucci		

Ionic equilibrium calculations: A problem solving approach L. Cardellini	1	151-160
The states-of-matter approach (<i>SOMA</i>) to introductory chemistry <i>G. Tsaparlis</i>	1	161-168
The chemistry graduate destined for employment but with no experience of it. Does it make sense? <i>R.G. Wallace</i>	1	169-174
Updated inorganic and organometallic laboratory course for junior chemistry students L. Szepes, A. Kotschy, & G. Vass	1	179-182
An integrated physical-science (physics and chemistry) introduction for lower-secondary level (grade 7) <i>G. Tsaparlis & K. Kampourakis</i>	2	281-294
The presentation of chemistry logically driven or applications-led? <i>N. Reid</i>	3	381-392
Teaching chemometrics with photography experiments in a university-level course on experimental design <i>D. Stamovlasis</i>	3	393-399
THE PRACTICE OF CHEMISTRY EDUCATION: NOTES		
The chemistry of photography in full daylight C.P. Hadjiantoniou-Maroulis & A.J. Maroulis	1	175-177
Periodic table software for high school (second edition) V. Viossat	3	401-404
THE PRACTICE OF CHEMISTRY EDUCATION: REPORTS		
THE PRACTICE OF CHEMISTRY EDUCATION: REPORTS A new chemistry curriculum in a newly founded university: Design under constraints <i>C.R. Theocharis & E. Leontidis</i>	2	295-302

416 <i>CERAPIE</i> , VOLUME 1, 2000		
<i>Chemical Education and New Educational Technologies</i> : An inter- university programme for graduate studies <i>C. Tzougraki, M.P. Sigalas, G. Tsaparlis, & N. Spyrellis</i>	3	405-410
REVIEWERS, VOLUME 1, 2000	3	411
CONTENTS, VOLUME 1, 2000	3	412-416
AUTHOR INDEX, VOLUME 1, 2000	3	417-420
SUBJECT INDEX, VOLUME 1, 2000	3	421-423
GUIDELINES FOR SUBMISSIONS	1 3	183-185 424-426

3

427-429

NEWS AND ANNOUNCEMENTS