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Hepiinyn

H epyocio avt) oavoaeépetor oty HEAETN TNG avTIOPOONC °Li + p — *He + “He HE TO
mAieokomo DINEX o€ avtiotpo@n Kivnuotikn, o evépyeleg Kovid oto epdypo Coulomb ko
oLYKEKPLUEVO OTIS evEpyeleg 2.7 ,3.3, 4.2 ko 4.8 MeV/u. To mepopatikd uépog g HEAETNG
npaypotoroOnke oto Instituto Nazionali di Fisica Nucleare Laboratori Nazionali del Sud in
Catania (INFN-LNS) otv Itahio. Aéopeg viov °Li agob eiyav emtoyvuviel oTic Topamdve
evépyeteg, mpooékpovoav oe otoyo CH; méyovg mepimov 300 ug/cmz. Ta mpoidvta g
avtidpaocng aviyvedtnkov omd £va TNAESKOMO TOv oviyveuTikoh ovotiuatog DINEX
tonofetnuévou g amdatact 15.5 cm and Tov 610)0, KOAOTTOVTOS £VOL E0POC YOVIOV A0 O)ap
=16" uéyxpr 34°. To tmieokomo amotelovviav amd Evav aviyvevtn AE kat dvo aviyvevtég E.
O AE aviyvevtig givon évag pikpoAwpldtokog  aviyveutng owming oymg (DSSSD), méyovg
48um kot dtootdoemv 5X5 ¢cm pe 16 opildvtia kar 16 kdBetec Awpideg (Strip). Ot aviyvevTég
E givan aviyvevtéc moprriov mayovg 530 um. O AE aviyvevtig omoppoence Evo LEPOG TNG
EVEPYELOG TOV TPOIOVIMV TNG AVTIOPAOTG TOL TEAIKA CTAUATNGOV 6TOV TG TeYVIKNG AE-E.

H avéivon tov pacpdtov tov aviyveut E enétpeye v tavtomoinot| tov tpoidoviov nécm
npoypatoromOnke pécsm tov Kodika PAW. Mg Bdon v KivnuaTikn Tov avtidpdcemy and
1o Nuclear Reaction Video Project (NRV) «xot v andAeia evEPYELOS TOV 1OVI®OV HEGQ
OTOVG AVIXVELTEG oo TO TpoOypappe  Liset++, tavtomomOnkav ta Tpoidvio mov TPoskuyay
amd TV avtidpaon.

H evepyeswokn PBoabpovounon tov AE ko E aviyvevtov mpaypatomombnke péow tov
LETPNOEMV TNG EANCTIKNG OKESNONG TV 1OVT®V TOL ®Li oe @OALA YpLGOV Thyovg 180 ug/cm2
Kol og @UAL avOpaka méyovg 240 ;,Lglcm2 o€ evépyeleg Tov 25 kol 29 MeV. H oteped yovia
ywo. kGOe Strip TpocdiopicTnke UECH TOV UETPNOEMV EAUGTIKNG OKESOOTG TOV ®Li o QUM
¥pLGOV Thyovg 180 ug/cm2 oe evépyewn 25 MeV |, pla amd Tig xapumAdtepeg evEPYELEG OOV 1|
okédaon pnopel va Oewpndei wg Rutherford. H pon g déoung kataypdenke cto Faraday
cup kat 1 akpifew g évtaong g emPePonddbnke pécw e okédaone Rutherford tov °Li
070 VOPOYOVO, OTIMG Kataypdenke and To pacuatopetpo MAGNEX.

O1 d10popikég evepyEg OLATOUES TV *He ko1 “He VIOAOYIOTNKOV Kot Yo TIG 4 EVEPYELEG GTO
yoviokd gbpog amd O =16" péypr 34°. Toéco 10 *He 600 kar 10 “He TOVTOTOWONKAY
enapkde péco e texvikig AE-E. To *He dev Stakpivoviav kabopd 610 ¢dopa, Kobde
Bpiokoviav mavew o€ €va ocvvexés vmoPabpo amd copdtio GAga,  TPoepyoOUEVA Omd
AVTIOPAGELS OIUCTAOTG LLE TO VOPOYOVO KoL TOV AvOpaKka, OAAL Kol Ao avTIOPAGELS CUVTINENG
pe tov avpaxoa. ['a ovtd T0V AdY0, T0 VITOPaBpo Empene va apapedel, avEdvovtog Tl TNV
oYETIKN ofePatdOTNTO GTOV VTOAOYICUO TOV JLOPOPIKDV EVEPYDV SLOTOUMDV TOV *He. Amo mv
GAAN pepid, to *He dwakpivovtav kabopd oto @acpo yopic va ypsraletor va apoipedet
Kdmolo vrofabpo kot €16t M afefordTnNTO GTOV VROAOYICUO TOV SAUPOPIKADV EVEPYDV
STOUDV TOL NTOV UIKPT.

Ot d10popikég evepyég O10TOUES GLYKPIONKOY LE OTOTEAECUATO TPOTYOVLEVOV UETPHCEMV
KaBdG Kot pe Bempntikodg VTOAOYIGHOVG. XNV evépyela Tov 16 MeV, n acvppovia petald
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TV 600 Tponyovuevev petpioswv (Lin et al., Elwyn et al.) arokotaotdbnke v uépet pe ta
Topwvd aroteAéopata. H kaln copeovia tov dedopévov pe v Bempio 0dnynoe oe xprioiua
CLUTEPACUATO Y10l TOV UNXAVICUO NG avTidopaons. EmmAéov, ot dtapopikés evepyég Slotopég

1
avolvnkav cg évo dOpotopa Tolvwvopmv Legendre Z:BlPl (cos(e)) Kot VTOAOYioTNKOY
1=0

Ol gvePYEG dlaTopéG NG avTidpaong pécm tov tomov o =4mnB, ,0mov Bp eivor n otobepd

undevikng taéng Legendre. TeAlwkd, ot evepyég SlOTOUES TG AVTIOPOONG WG GLVAPTNOT TG
EVEPYELOG CLYKPIONKOYV LE TPONYOVUEVO OTOTEAECUATO OTOL OTOKATAGTAONKOV — KATOlES
ACLUPOVIEG eVM amokaAVPONKe Evag mBavoc cuvtoviopds oe evépyela Ep=3.7 MeV.

(4]
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Extended Summary

This master thesis refers to the study of the reaction °Li + p — ®He + *He with the DINEX
telescope in inverse kinematics at near barrier energies, namely 2.7, 3.3, 4.2 and 4.8 MeV/u.
The experiment was performed at Instituto Nazionali di Fisica Nucleare Laboratori Nazionali
del Sud in Catania (INFN-LNS), Italy. Beams of °Li were accelerated at the above energies
and impinged on a ~ 300 pg/cm?® CH, target. The reaction products were recorded with one
telescope of the DINEX array and an angular distribution was performed. The telescope was
set at a distance of 15.5 cm far from the target, allocating an angular range of 6y, =16° to 34°.
The DINEX telescope was consisted of one AE detector and two E detectors. The AE stage of
the telescope was a DSSSD silicon detector, 48 um thick, with an active area of 5x5 cm and
16 vertical and 16 horizontal strips. The E stage was a silicon pad detector, 530 um thick. The
AE stage of the telescope absorbed a part of the recoil ion energy, allowing a Z separation via
the AE - E technique.

The data analysis was performed at loannina using the program PAW, while the
identification of the peaks was performed taking into account the kinematical prediction from
the Nuclear Reaction Video Project (NRV) and the energy losses from the Lise++ program.

For the energy calibration of AE and E detectors the elastic scattering measurements
performed with a gold foil 180 pg/cm? thick and with a carbon foil 240 pg/cm? thick, at
bombarding energies 29 MeV and 25 MeV. The solid angle for each strip was determined
with an elastic scattering measurement performed with a gold foil 180 pug/cm? thick at one of
the lower energies, namely 25 MeV, where the scattering could be considered as pure
Rutherford. The flux of the beam was recorded in the Faraday cup and the accuracy of the
flux intensity measurement was confirmed via the Rutherford scattering of °Li on hydrogen,
recorded in MAGNEX.

Angular distribution measurements were performed at the 4 energies by detecting both
reaction products *He and “He in the laboratory angles 8j,,=16° to 34°, which correspond to a
wide angular range in the center of mass frame (8.m~ 40° to 140°). The *He and “He were
well resolved via the AE - E technique. The “He peak was sitting on the top of a continuous
background originating from breakup processes on hydrogen and carbon as well as from
fusion reactions on carbon. This background had to be subtracted increasing the associated
uncertainty to the “He cross sections. On the other hand *He was clearly distinguished, no
background was subtracted and the uncertainty to these cross sections was kept low. The so
obtained differential cross sections were compared with previous measurements and with
theoretical calculations. Previous inconsistencies at 16 MeV presented between the previous
data sets were partly clarified with the present results, while a good consistency of data and
theory gave ground to useful conclusions for the reaction mechanism. Finally, the differential

1
cross sections were fitted to a sum of Legendre ponnomiaIsZBlPl(cos(e))and total
1=0

reaction cross sections were estimated at the above energies according to the formula

(10]



o =4uB,, where By is the zero order Legendre coefficient. Subsequently the results were

compared with some sets of previous excitation function measurements. The new results
disclose previous inconsistencies and predict a possible new resonance at Ep=3.7 MeV

(11]



Introduction

This work is part of the curriculum of the Postgraduate Program of the Department of
Physics, University of loannina. The research area belongs to the basic direction of Nuclear
Physics and particularly in the area of Nuclear Reactions with consequences in the area of
Nuclear Astrophysics.

In this work, the angular distribution of the p(°Li, ®He)*He reaction has been studied at
energies 2.7, 3.3, 4.2 and 4.8 MeV/u. The significance of the °Li(p, *He)*He reaction has
been demonstrated for a long time in several experimental studies in relation with controlled
thermonuclear reactors based on the use of advanced ion fuels [1-11]. Also, this reaction is
used in fundamental astrophysical problems like the understanding of the Bing Bang
nucleosynthesis, and “lithium depletion” either in the sun or in other galactic stars [12-15].

Total cross sections and angular distributions of the reaction, as well as the values of the
“astrophysical S-function”, have been measured at the energy range E,=0.1-0.7 MeV by T.
Shinozuka et al. [16] and by J. U. Kwon et al. [17]. Chia- Shiou Lin et al. [18] have measured
the excitation curve and the angular distribution of the reaction at proton energies from 1.0 to
2.6 MeV. For the measurements, they have used a coincidence method between the two
reaction products *He and “He in order to obtain clear spectra without backgrounds. In
addition, at this energy range, angular distribution measurements have been performed by J.
B. Marion et al. [19], and by A.J. Elwyn et al. [20] who have also calculated the reaction's
total cross section, thermonuclear reaction rate parameters and astrophysical S factors. J. P.
Johnston et al. [21], as well as A. Tumino et al. [15,22] have studied this reaction and they
have carried out angular distribution measurements at proton energies from 2 MeV down to
astrophysical energies. Temmer [23] and S. N. Abramovich et al. [24] have performed
measurements of reaction cross section at the energy range from 2.0 to 5.0 MeV/u.
Moreover, J. M. F. Jeronymo et al. [25] has studied the excitation curve and the angular
distributions of the reaction at the same energy range as above. U. Fasoli et al. [26] have
studied angular distribution curves taken between 3.0 and 5.6 MeV/u but the differential
cross sections, which have been also fitted to a series of polynomial Legendre, have been
expressed in arbitrary units. Furthermore, C. B. Gould et al. [27] have calculated the absolute
cross sections at the energy range from 3 to 12 MeV, while at bigger proton energies,
measurements of the reaction’s differential cross sections have been performed by K. Schenk
etal. [28] and by Michael F. Werby et al. [29].

The °Li(p, ®He)*He reaction is studied in this work as a complementary part of The
LIPMAGNEX experiment which includes recent measurements of elastic scattering and
breakup modes [30-31] with the MAGNEX spectrometer [32-34] in inverse kinematics.
These measurements with the MAGNEX spectrometer are part of the research program of the
group of the Nuclear Physics Laboratory (NPL) which is relative to the optical potential and
various reaction channels of weakly bound nuclei at near-barrier energies and the
consequences on coupling effects. In this respect, the present results will be used in future
work on a global understanding of the optical potential and relevant reaction mechanisms.

[12]



Also, due to the fact that the previous measurements didn't agree so well and several
inconsistencies occurred, these data serve to clarify the experimental situation at these
energies [18-21,23-28]. The experimental data were collected in the Instituto Nazionali di
Fisica Nucleare- Laboratori Nazionali del Sud in Catania (INFN-LNS), Italy and the analysis
of the data was performed at the NPL- loannina. The results are discussed in the present
work which includes the following chapters:

e Chapter 1: It includes a brief description of the theory for direct and compound
mechanism reactions as well as for Rutherford scattering. It also includes, briefly,
how the Coulomb barrier is calculated and some elements for semiconductors and
finally Double Sided Silicon Strip Detectors (DSSSD) and DINEX telescope used in
this work.

e Chapter 2: It includes a description of the experimental setup, the energy calibration
and the determination of solid angle of the used telescope.

e Chapter 3: It includes the data reduction and particularly the determination of the
angular distribution and the reaction cross section.

e Chapter 4: It includes the Summary with the conclusions of this study.
This work also contains an appendix with:

¢ the error calculation of solid angle

o the error calculation of differential cross section

e aprogram for the calculation of the Coulomb barrier

e a program for the conversion of the differential cross section from the laboratory
system to the center of mass frame

e Tables related to the energy calibration of the detectors and to the differential cross
section.

[13]



1. Theory

1.1 Introduction to Nuclear Reactions

A nuclear reaction is the result of the bombarding of a nucleus- target (stationary) with a
beam of nucleus-projectile, such as charged particles (p, alpha particles or heavier nuclei),
photons or n, which have a particular kinetic energy. In order for the reaction to take place,
the projectile and the target need to approach each other at distances of the order of the
nuclear dimensions (10> m), since the nuclear force reaches only a distance of 10™°m. The
energy must be high enough to overcome the electromagnetic repulsion between the protons.
This energy "barrier” is called the Coulomb barrier and it is analyzed below in chapter 1.6.
This collision between the two nuclei can cause the scattering of the projectile, the absorption
of the projectile or a change in the nuclear composition and/or the energy state of the
interacting nuclei. The products of the nuclear reaction can be either in their ground state or
in an excited state. A typical nuclear reaction can be written as:

a+X->Y+b+Q or X(ab)Y

where a is the accelerated projectile, X is the target nucleus, and Y, b are the reaction
products while Q is the released or absorbed energy during the reaction. Usually, Y is a heavy
product that stops in the target and is not directly observed, while b is a light particle that can
be detected and measured. If Q>0 (the total mass of the products is less than the mass of the
projectile and the target), then the reaction is called exothermic (energy releases), while if
Q<0 (the total mass of the products is greater than the mass of the projectile and the target)
the reaction is called endothermic (energy is absorbed).

Two nuclei can interact between each other with the processes described below:

- the elastic scattering process, where the outgoing particles are the same with the incident
particles ( where X=Y and a=b and Q=0) and they are in their ground states, such as

n+2%b > n+*®ph

- the inelastic scattering process, where the outgoing particles are the same with the
incident particles ( where Y=X" or/fand b=a" and Q#0) and the Y or/and b are in excited
states (from which they will decay by y emission) , such as

12C + 208Pb N 12C* + 208Pb*

Elastic and inelastic scattering processes can be initiated either due to Coulomb or due to
strong interactions.

- the nuclear reactions, where A + a > B + b with Q#0. The nuclear reactions are
characterized by the strong interaction, which is responsible for the nuclear force. The
nuclear reactions can be distinguished into the following categories, based on the mechanism
that governs the process itself:

(14]



¢ the direct reactions, where we have interchange of few nucleons between target and
projectile due to their interaction with the potential (nuclear or Coulomb) of the
nucleus-target and the whole process of the interaction lasts about 10 sec.

e the compound nucleus mechanisms, where the projectile is absorbed by the target,
creating temporarily a compound nucleus, which is in an excited state and which
finally decays with the evaporation of particles The whole process lasts more than the
direct reactions (10™°sec). The compound nucleus “forgets" the form of it's
production.

e the resonance reactions, which are between the direct reactions and the compound
nucleus mechanisms, where the incoming particles forms a 'quasi-bound’ state before
the outgoing particle is ejected. [35-39,42]

1.2 The Q value of a reaction

The Q value is the available energy for a reaction to take place. It is the subtraction of the
ground state masses of the exit channel from the masses of the entrance channel. It is written
according to the equation (1.1):

Q=(m, +m, -m_ -m,)c’ (1.1)

or it can be written as the difference between the final kinetic energy and the initial kinetic
energy:

O=Tra1 "Thivia = L+L-T-T (1.2)

If Q>0 then the reaction is called exothermic and energy is released as kinetic energy of the
reaction products, while if Q<0 then the reaction is called endothermic and energy is

absorbed (the initial kinetic energy is converted into nuclear mass or binding energy).
[35,39,42]

1.3 Rutherford Scattering

From the scattering theory we will refer to Rutherford scattering which is pertinent to this
work.

When the projectile approaches the target nucleus, in a nuclear reaction, a repulsive Coulomb
force acts between them, as both the projectile and the target are positive charged. When only
the Coulomb force is active, then we have the Rutherford scattering. If there is no interaction
between them, the projectile would traverse a straight path which would have a distance b
from the nucleus target. This distance between the projectile’s path and the target nucleus is

[15]



called the impact parameter b. However, the projectile follows an hyperbolic path due to the
repulsive Coulomb force and r is the minimum distance that it can approach from the target.

‘' Symmetry
P = momentum of the \

\ Plane
- (1 projectile R
2 VAP
\
\
\
P. \
i
— s 15
‘)
Path of projectile
- = SRR, g ——

I b Impact Parameter ‘. 4
Target Nucleus

FIG. 1.1: The Rutherford scattering of the positive charged projectile from the positive charged target.

As it can be seen in Figure 1.1, 0 is the scattering angle of the projectile.

The momentum of the projectile changes from p; to p, due to the impulse j F dt by the
target:

Ap:pg-plzj F dt (1.3)

The target is considered stationary so the kinetic energy from the projectile is conserved, as
well as its momentum:

p1=pz2=mv (1.4)

where v is the velocity of the projectile. According to Figure 1.1, using the law of sins:

A
P _ mv (15)
sin6 , 110
S1ln
Since

1 S] S] S] . .
sing(n—e) = cosE and sin6= 2sin5cos§ the equation (1.5) will be:

S
Ap=2mvsin§ (1.6)
The impulse can also be written as below, as it is in the same direction with the Ap:

[16]



UF dt ‘=J.Fcoscp dt (1.7)

Then the equation (1.3) from the (1.6) and (1.7) is:

+(H—G)/2
dt

J. Fcosp—doe (1.8)
de

+00 5
2mvsin—= J. Fcospdt = 2mvsin—=
-0 —(n—e)/2

It is known that the quantity % is the angular velocity of the projectile, and the angular

momentum is conserved, so:

d dt r’
mor’ =const.=mr’ —P = myb=> o= = (1.9)
dt do vb

so the (1.8) equation is:

+(n-6)/2
2rr1\72bs;ir19 = I Fricosede (1.10)
~(n-8)/2
Also, it is known that the only force which interacts between the projectile and the target is
1 7,2,e

the Coulomb force: F = = (1.11)
drie, r
so the (1.10) equation results that:
+(m-6)/2 2 2 +(m-6)/2
. 0 1 277 8 b S
2mvZbsin= = I L 22e I2COS(Pd(P:>%Sin—: J. cospdp =
2 —(n—e)/24nso r 2,2, 2 ~(m-0)/2
8 b 0 0 6 27,7 7,7,
:%sin—=2cos—:>tan—= - 262 = %0 > (1.12)
Z,7,e 2 2 2 8memv'b 4me mvb

The equation (1.12) for the scattering angle, can also be written as a function of the kinetic
energy of the projectile:

2
2 8me.Eb

However, at the closest approach r, where the velocity of the projectile is v=0 as the
projectile strikes directly the target (b=0), the conservation of the projectile's energy gives:

2 2 2
lmvz _ 1 zze oy = 2,2, LZe (1.14)

(] 2
2 drie, 2ne mv 4drie E

(17]



where E is the beam energy, and thus the scattering angle equation (1.13) becomes:

ranl-X (1.15)

FIG. 1.2: Schematic representation of incident beam particles in the area do which are scattered into the solid
angle dQ.

Considering that I, is the flux of the beam of the incident particles, then the flux which
passes through the annulus with radii b and b+db (according to the Figure 1.2), is written as:

dI=2nI_bdb (1.16)
then if we differentiate the equation (1.15):

do=-—22_dg (1.17)

4sin’ (%)

and combining the equations (1.16) and (1.17), we have:

1 cos(ij
dI==nlr’ dQ (1.18)

4 . {ej
S1ln —
2

The flux is scattered into the area between 6 and 6+d6 angles which corresponds to the solid
angle dQ=2nsin6do, and finally the differential cross section for the Rutherford
scattering is given from the formula (1.19):

(18]



do_ (212262 T - (1.19)
i '
Sin
where E is the beam energy. [35,37,41,42]

1.4 Direct reactions

The direct reaction is a reaction where the nuclei are instantaneously in touch and
immediately they separate. This means that, the duration of the direct reaction is the time
which needs the incident particle after it has encountered the target nucleus to traverse the
nuclear field (10* sec). It is a fast reaction mechanism and proceeds directly from the initial
state to the final state without the forming of an intermediate compound state. There are
different types of direct reactions such as the elastic scattering, the inelastic scattering, the
transfer reactions (stripping reaction and pick-up reaction) and the knockout reactions.

The most simple direct reaction is performed in the elastic scattering where the incident
particle and the target are elastically scattered, without loss of energy. The incident particle
interacts with the target nucleus as a whole and the optical potential is used for the
description of the interaction. The optical potential is written as:

u(r) = V() +iw() (1.20)

where the real part of the potential describes the elastic scattering of the incident projectile
by the nucleus target ,while the imaginary part describes the absorption, which is the process
that removes flux from the incident channel.

Another direct reaction is performed in the inelastic scattering where the projectile interacts
with the target- nucleus, gives to it some of its energy and raises it to an excited state. In the
most simple inelastic scattering, the projectile interacts with one single nucleon of the target-
nucleus and drives it to a higher energy state. Also, in the inelastic scattering the projectile
can interact with more than one nucleons of the target which are raised to excited states.
These excited states usually have a collective character. [38]

Another type of direct reactions are the nucleon transfer reactions. In these reactions one or
more nucleons or a cluster of nucleons can be transferred from the projectile to the target or
from the target to the projectile. The transfer reactions are divided into the stripping reactions
and into the pick-up reactions.

[19]



In the stripping reactions (Figure 1.3), the projectile loses one or more nucleons while it
approaches the target and these nucleons are captured by the target. An example of a
stripping reaction is a (d, p) process in which a deuteron indicates on the nucleus target. The
deuteron is a stable particle and it is consisted of a proton and a neutron. After the indication
of the deuteron on the target, the neutron is stripped from the deuteron and is captured by the
target. In the exit channel the reaction products are the proton and the target-nucleus with one
more neutron. Another stripping reaction is the “°Pb(}’0,**0)*®Pb. [39] A stripping reaction
can be written according to the formula: a+ A — B +b, where B=A + x and b=a - X and
X is one or more nucleons.

The pick-up reactions (Figure 1.4) are the opposite of the stripping reactions. While the
projectile is getting closer to the target, the target loses one or more nucleons which are
finally captured by the projectile. An example of a pick-up reaction is the “°Ca(®He,*He)*Ca.
[36] One pick-up reaction can be written as: a + A — B +b, where B=A -xand b =a + x
and x is one or more nucleons.

The knock-out reactions (Figure 1.5) are another case of direct reactions. The projectile
collides with the target and a nucleon or a group of nucleons from the target are ejected
separately. The projectile remains unchanged, so in the final state of the reaction three

particles are observed. One example of a knock-out reaction is the: [H+ "N — H+"'N+n,
where the final state has three particles. [35-39]

stripping
reaction

FIG. 1.3: Schematic view of a stripping reaction.

pick-up
reaction

FIG. 1.4: Schematic view of a pick-up reaction.
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FIG. 1.5: Schematic view of a knock-out reaction.

1.5 Compound nucleus mechanism

In a compound nucleus mechanism, the projectile collides with the target nucleus, and during
that collision, the nucleons from the projectile have enough time to interact with the nucleons
from the target, by coming into contact many times. During that time, a compound nucleus is
formed and it is excited. A nuclear compound mechanism can be written according to the
formula:

a+X->C ' >Y+b

where a is the projectile, X is the nucleus target, C is the excited compound nucleus, Y and b
are the reaction products. This compound nucleus stays united until the incident energy is
shared among all the nucleons of which it is consisted. The compound nucleus lives long
enough in order a statistical equilibrium to be achieved. As the interactions between the
nucleons increase randomly, there is a statistical distribution in energies and the probability
of the escape of one or more nucleons from the compound system increases, until, in fact, one
or more nucleons escape (after it has gained enough energy), just like the molecules which
evaporate from a hot liquid, and the residual nucleus reaches its ground state by gamma
emission. Due to the many interactions between the nucleons, the identities of the original
nucleus are lost, which means that the compound nucleus has forgotten the entrance channel
from where it comes from and as a result it can decay in a variety of different channels. This
memory loss of the formation process indicates that the decay of the compound nucleus is
completely independent from its formation. This is known as the Bohr independence
hypothesis. According to the independence hypothesis, for the determination of a compound
nucleus the only things that are needed are its energy, its angular momentum and its parity,
and not the way it is formed. [35-38] The verification of the independence hypothesis was
tested by Ghoshal et al. (1950) who measured the cross sections of ®*Cu(p,n)®*Zn and
®Ni(o,n)*zn from 12-40 MeV and from 3-31 MeV respectively ,which lead to the
compound nucleus ®*Zn. They found out that the cross sections coming from these different
reactions have similar characteristics, which indeed verified that the way the compound
nucleus decays does not depend on the mode of its formation.[35]
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1.5.1 Cross section for a compound nucleus reaction

The compound nucleus may decay in several exit channels and due to the fact that its decay is
independent from the way of its formation, the reaction cross section is calculated as below.
If the cross section for forming the compound nucleus C coming from the incident channel a
+ X is o, and the decay of the compound nucleus C to a particular exit channel B with
reaction products Y + b is characterized by the relative probability Wy per unit time and the
width I's = hWp ,then the reaction cross section is given according to the equation:

T

=0, — 1.21
O_B(x 00( P ( )

where O, is the reaction cross section from the entrance channel a to the exit channel B, I is the
total width of the decay which means it is the sum of all the widths of the possible exit
channels (a,B,y,...):

[ =T, +Tp+T, +.. (1.22)

T
and ?ﬁ is the probability for the compound nucleus C to decay to the exit channel B. [36]

1.5.2 Models of compound nucleus reaction

In what follows we will briefly refer to the compound nucleus models as the statistical model
(the Hauser- Feshbach theory (1952)) which comes as a result from the Breit- Wigner
resonance theory and the evaporation model for the decay of the compound nucleus (the
Weisskopf- Ewing theory (1940)) .

1.5.2.1 Breit- Winger Resonance

When the projectile comes in touch with the target nucleus, the nucleons interact with each
other, the beam energy is distributed among all the nucleons most of the time of the
interaction, and an excited compound nucleus is formed. None of the nucleons has enough
energy to escape but finally the compound nucleus will decay. When the beam energy is low
and the compound nucleus has a low excitation energy, then it presents discrete quantum
states which have a particular spin and orbit. However, due to the effect of instability of the
compound nucleus, each of the decaying states, present an imprecise energy described by a
width I'. The width I" is given according to the equation I'~ h/t (1.23), where 7 is the lifetime
of the state.

When the beam energy of the projectile is the same with the energy of one of these quantum
states of the compound nucleus (E;), then a compound resonance is formed (Breit- Winger
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resonance) and it is presented as a sharp peak in the reaction cross section. The compound
resonance is a characteristic of the compound nucleus and not of the pair of the particles from
which it is formed. So, the reaction cross section from the entrance channel o to the exit
channel B (into which the compound nucleus decays) at the beam energy E, is given from the
following formula (1.24) :

T
= Gl (1.24)

OotB = ki

where E; is the resonance energy, E is the beam energy, k, =p_/# is the wave number of the

incident particle in the entrance channel, T', is the width for the decay into the a + X channel,
I'p is the width for the decay to the exit channel B (Y + b) and I is the total width which
means that it is the sum of all the widths of the possible exit channels. [37]

While the beam energy increases, as well as the excitation energy, the density of the
compound nucleus states gets bigger, the resonances come closer until they overlap each
other and the cross section turns to be a smoothly energy function. None state can be
analyzed separately and this leads to the statistical model of the formation and the decay of
the compound nucleus. [37]

1.5.2.2 The Hauser - Feshbach formula

The statistical model is used for the calculation of the cross sections of reactions averaged
over a large number of compound nuclear states as a result of the overlapping compound
resonances. When the incident particle collides with the target nucleus, it is absorbed by the
target. Using the Bohr Independence Hypothesis and the conservation of the angular
momentum, the cross section can be written as a function of the projectile transmission
coefficient T, and of its probability to traverse the surface of the target nucleus. So, from the
Bohr Independence Hypothesis, the cross section, as already said, can be written as :

—o.p (1.25)

O_od?) o B

where o, is the cross section for the formation of the compound nucleus and Pg is the
probability of its decay into the exit channel .

The cross section of the compound nucleus formation for a particular angular momentum is
given from the equation:

II

II
Ou 1 T2
o

%L =, (21+1)T, (1.26)

o

where ¢g,=(2I1+1) is the statistical weight due to the angular momentum and T, is the

transmission coefficient in the entrance channel. The maximum transmission coefficient T is
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the unit, but it is usually less than the unit. The T, can be calculated from the appropriate
optical model potentials. Thus, the cross section of a compound nucleus reaction from a
single incident channel a to a single exit channel B, for a particular angular momentum |1, is
written according to the formula:

(21+1) o (1.27)

2T

i

Ous = OGPB =

| =

where Py is the ratio of the corresponding transmission coefficients and the sum on the right-
hand side represents all the possible exit channels. This is known as the Hauser-Feshbach
theory and it is also used for the prediction of the differential cross sections. The angular
distribution of the reaction products coming from a compound nucleus mechanism are
symmetric at around the 90° in the center of mass system, while in the direct reactions they
are forward peaked. [37,38,40]

1.5.2.3 The evaporation model for decay of the compound nucleus
(Weisskopf - Ewing theory)

The Weisskopf theory is the first statistical model which was used for the description of the
compound nuclear decay. It compares the emission of particles from the excited compound
nucleus, which is formed after the projectile collides with the target nucleus, with the
evaporation of molecules from a fluid. Considering that the reaction occurs in the entrance
channel a (energy beam E) and the decay of the compound nucleus occurs in the exit channel
a' (energy E"), the cross section for the formation of the compound nucleus is o¢,(E) and the
probability of its decay into the channel o' to states with energy between E' and E'+dE' is
P« (E,E"), then the reaction cross section from the o channel to the o' channel can be written
as:

O (E/,E")dE'=0_, (E)R,.(E,E")dE" (1.28)

and the Weisskopf-Ewing formula for the reaction cross section is given according to the
equation:

gm o (), (0)as
.g.m. e (). (U)dE"
>oaom [ Eo i (E)e, (U)

where Q" is the Q-value of the reaction from channel o to an exit channel o, U is the residual
nucleus energy: U=E-E'-B where B is the binding energy of the ejectile in the compound
nucleus, o, (U) is the level density of the residual nucleus in the channel o' at excitation
energy U, g,=2i,+1 and g,=2i,+1 are the statistical weights of channels a (initial) and o'
(final) where i, and i, are the spin of the projectile and the ejectile , m, and m, are the

o (E/E)aE =0, (E) (1.29)
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reduced masses in the channels o and o'. The level density of the residual nucleus of the
reaction depends on the excitation energy and it can be expressed either as a constant
temperature formula or as an equidistant spacing approximation with the spacing of the states
being predicted by the Fermi gas model.[38]

With this evaporation theory, the differential cross sections can be calculated mostly for
reactions to continuum states. In general, the Weisskopf-Ewing formula is used for detailed
analyses of the cross sections of several outgoing channels in a particular reaction. It is also
used for Monte Carlo code calculations for the description of the decay of a fully equilibrated
nuclei [38,40] as is the case in the calculations performed for this experimental work by Dr
N. Nicolis but in a generalized approach [43-45]

1.6 Differences between direct and compound nucleus reactions

e In compound nucleus reactions, the angular distribution is symmetric at around 90°,
due to the long lifetime of the compound nucleus which indicates the memory loss of
the entrance channel, as well as, due to the conservation of the angular momentum. In
the direct reactions the angular distributions are not symmetric and they tend to be
strongly peaked at the forward angles.

e The duration of the direct reactions is about 10 sec, which is the time that the
projectile needs to cross the target nucleus, while the duration of the compound
nucleus mechanisms is much longer (10 sec). [38]
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1.7 Coulomb barrier

In order for a nuclear reaction to take place, the projectile and the target must come close to
each other. With the exception of neutrons, in a nuclear reaction both the projectile and the
target are positively charged and when they approach each other, they repel due to the
electrostatic interaction. As a result, the projectile needs to overcome this energy barrier due
to the electrostatic interaction in order the nuclear reaction to take place, as it can be seen in
Figure 1.6. This energy barrier is called the Coulomb barrier and is given by the
electrostatic potential energy:

2
:kqﬁzz4l 42,8 (1.30)
r IIe r

o
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coul.

where Z;, Z, are the atomic numbers of the projectile and the target, r is the distance
between them (the sum of the projectile radius and the target radius), e is the elementary
charge ~ 1.6*10™° Cb and &, is the permittivity of free space ~ 8.854187*10™ Farad/m. In
another more practical form we can write the formula for the Coulomb barrier as:

—1.44%4% (1.31)
r

\Y

coul.

and if r is in fm then the Coulomb barrier V will be in MeV. The nuclei must collide at high
velocities in order the projectile to overcome this energy barrier and their kinetic energies
drive them close enough for the strong interaction to take place and bind them together or
can interact with the target nucleus via a tunneling effect.

Yoo

Coulomb
Barrier

Repulsive

=

Abtrachive
Huclear
Potential

Atractire

FIG. 1.6: The projectile as it comes closer to the target, a repulsive force is performed due to the electrostatic
interaction, so in order the nuclear reaction to take place, the projectile needs to overcome the Coulomb barrier.
After it has overcome it, then the strong interaction takes place and the nuclei interact between each other.
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1.8 Semi-conductors

Semiconductors are crystalline materials which can be considered as a sum of interacting
atoms. When the atoms approach each other close enough to form a solid, the valence
electrons interact with each other and their atomic levels are broadened into wider regions,
the energy bands. This energy band structure is consisted of three regions: the valence band,
the "forbidden" energy gap and the conduction band(Figure 1.7).

conduction band
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L« ¥}

o .

1= conduction band

z gap

s

k= gap conduction band
valence band valence band valence band

Insulator Semiconductor Conductor

FIG. 1.7: Energy band of insulator, semiconductor and conductor

The valence band corresponds to the outer-shell electrons which are tightly bound to specific
lattice sites in the crystal and it is totally occupied by electrons. In the "forbidden" energy gap
there are no available energy levels and its size determines whether the material is classified
as a conductor, an insulator or a semiconductor. The conductivity band is the region where
the electrons are detached from their parent atoms and they are free to traverse the entire
crystal.

The electrons in the crystal are exactly as many as there are needed to fill completely the
available sites within the valence band. When the temperature is different than 0 K, thermal
energy is shared among the electrons, and if a valence electron gains sufficient energy, then it
can be excited into the conduction band, leaving a vacancy (hole) in its original position. So
an electron-hole pair is created.

In a pure semiconductor (intrinsic semiconductor), the number of electrons in the conduction
band is equal to the number of holes in the valence band. This balance can be destroyed by
the introduction (doping) of a small amount of impurity atoms, which have one more or one
less valence electron in their atomic shell. For example, for the silicon semiconductor, which
is tetravalent, the dopant may be pentavalent or trivalent.

For a pentavalent dopant, in the ground state, four electrons fill the valence band and one
electron is left. This extra electron goes to a discrete energy level (donor level), which is
created in the energy gap close to the conduction band, and then it can easily be excited to the
conduction band. The extra electrons fill up the holes which are normally formed, decreasing
the hole concentration. Thus, the electric current is due to the movement of electrons as they
are the majority charge carriers. These are referred to as the n-type semiconductors (donor
doped semiconductors).
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For a trivalent dopant, in the ground state, three electrons fill the valence band and one
valence electron is missing, leaving one covalent bond unsaturated (one hole). A discrete
energy state (acceptor level) is created in the energy gap close to the valence band, to which
the electrons from the valence band can be easily excited, leaving behind them extra holes
and decreasing the concentration of the free electrons. So, there is an excess of holes in the
crystal and the electric current is due to the movement of holes as they are the majority
charge carriers. These semiconductors are called as p-type semiconductors (acceptor doped
semiconductors). [46, 47]

1.8.1 The p-n semiconductor junction

The semiconductor detectors are based on the formation of a junction between the n-type and
the p-type semiconductors. Due to the different concentrations of the electrons and the holes
in the two regions of the junction, there is a diffusion of holes to the n-region, as well as a
diffusion of conduction electrons towards the p-region (Figure 1.8). Thus, the p-region has a
negative charge, while the n-region becomes positive. This effect creates an electric field
across the junction which finally stops the further diffusion and an immobile charge
distribution is presented. The region over which the charge imbalance exists is called as
depletion region and is presented in both the p and the n sides of the junction.

However, in the p-n junction the intrinsic electric field is not enough and the thickness of the
depletion zone is quite small that it can only stop the lowest energy particles. So, an external
voltage is necessary to be applied across the junction in the reverse biased direction. By
applying this reverse-bias voltage to the junction, the holes are attracted in the p-region
towards the p contact, and the electrons in the n-region towards the n contact. The depletion
zone is widened (Figure 1.9), as well as the sensitive volume of the crystal for radiation
detection.[35,41,46,47]
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e ©® o 4‘.. O @) _Oo:p:nl__+
1 . ‘ . . ol ' -
] : ! ® o L L
QX ©% AR
N e " \ ' depletion zone
holes p-n electrons with reversed bias
junction
FIG. 1.9: The reversed bias junction. The depletion
FIG. 1.8: The p-n junction. The electrons from the zone is widened while applying the reversed bias
n-region are diffused to the p-region while the voltage to the junction.
holes from the p-region are diffused to the n-

region.
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The most widely used silicon detectors for the detection of charged particles are the surface
barrier detectors. They rely on junction formed between a semiconductor and certain metals,
usually n-type silicon with gold or p-type silicon with aluminum. In order to be fabricated,
the silicon surface is firstly etched and then a thin layer of gold is deposited via evaporation
for electrical contact. Before the deposition, the surface is oxidized slightly. Also, surface
barriers can be produced by starting with a p-type crystal and evaporating aluminum which is
deposited on the surface for electrical contact. The thickness and the depletion zone regions
of the SSB detectors vary. One disadvantage of the surface barrier detectors is their
sensitivity to light and to damages from exposure to vapors. [46,47]

1.9 Silicon Strip Detectors

In order to obtain spatial information for a charged particle which traverses a detector, there
are two types of detectors. The first uses a continuous readout with a resistive charge division
method while the second employs a discrete array of readout elements. The continuous
detector is actually a diode with a resistive electrode on the front face and a low resistive
back electrode. When a charged particle passes through it, its position and its energy are
obtained.

The silicon strip detectors are actually discrete detectors. They are consisted of a series of
individual strips placed on the same semiconductor base (Figure 1.10). Usually n-type silicon
is used as the base material into which highly p- doped (p*) strips with aluminum contacts are
implanted. The metallic cover permits the connection between the detector and the readout
electronics via a micro bounding. On the opposite surface (back face), a highly n- doped (n*)
electrode is placed. Each strip acts as a separate detector and forms a p-n junction with the n-
type silicon bulk. The gap between the strips is electrically controlled in order to maintain
isolation between adjacent diodes. A reverse biased voltage is applied between the p- strips
and the back side in order to make the full depth of the bulk sensitive. When a charged
particle passes through the silicon detector, it creates ionization in the bulk of silicon. Then
electrons from the silicon atom’s are released while holes are left behind. So, electron—hole
pairs are created. Due to the electric field inside the bulk, the charge carriers start to drift
towards the electrodes. The holes drift towards the negatively charged p- type strips, while
the electrons drift towards the positively charged back side. The readout electronics is
connected to each strip and collects the charges which are generated by the incident particle.
From the signals on the individual strips the position of the through going particle is deduced.
[46-49]
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FI1G.1.10: A silicon strip detector. It is consisted of a series of p-type strips implanted on the n-type silicon bulk
and on the opposite side a highly-doped n type is placed.

1.10 Double Sided Silicon Strip Detectors

The Double Sided Silicon Strip Detector (DSSSD) is a silicon detector with orthogonally
oriented readout strips implanted on its two opposite sides. One DSSSD is consisted of a n-
type silicon layer which has p* doped and n* doped implanted strips with aluminum contacts,
orthogonally oriented on its two sides (p-side and n- side) as it is shown in Figure 1.11. Each
n* strip is surrounded by a p* implantation (p-stop strip) in order to be isolated from any
adjacent strip. A reverse biased voltage is applied over the detector, creating an electric field
throughout the bulk material that prevents recombination of the electrons and holes. When a
charged particle traverses the depleted silicon bulk, free carriers are released in proportion to
the energy of ionization. These free carriers (electrons, holes) migrate to the nearest n* and p*
strips respectively, producing two coincidence signals which can be recognized as a single
event at a particular position on the detector. Then, this signal is amplified by the amplifier
which is connected to every strip, and the two coordinates of the position of the incoming
particle and the deposited energy are determined through the connected readout electronics.
A DSSSD can also be formed by using a p-type silicon layer with n* and p* implanted strips
on the front and the back side of the detector. However, usually the most popular DSSSD are
the n-type detectors.

The DSSSD are widely used in the fields of radioactive beam physics and nuclear
astrophysics, as well as, in many applications such as medical imaging sensors, radiation
detectors, sensing detectors in space experiments and tracking detectors of charged particles
in high energy physics experiments. They are also used for X-Ray and y-ray detection owing
to the silicon sensitivity to electromagnetic radiation. Moreover, the DSSSD detectors are
used in the EXPADES system [50] (the detection array of the EXOTIC facility at LNL) and
in the GLORIA system [51-52] developed at Huelva University. One of their advantages is
that they can measure two coordinates using one detector layer, while the single sided silicon
strip detectors need an extra detector layer for providing two-dimensional information. Also,
the DSSSD can cover a large area using a relatively small number of readout channels with a
good position resolution. However, due to the complicated manufacturing and handle
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procedures they are more expensive and they need special strip insulation of n-side (p-stop).
[53-56]
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FIG. 1.11: A Double Sided Silicon Strip Detector. It is consisted of a n-type silicon bulk with p* and n*
implanted strips with aluminum contacts, orthogonally oriented on its two sides. The n* strips are separated with
p* implantations.

1.11 The DINEX telescope

The DINEX (Dispersion de Nucleus Exoticos) telescope was designed for better energy
resolution, for high granularity and for covering a solid angle as large as possible. It allows
mass and charge separation of the reaction products. The DINEX detector array consists of
one AE detector and one E detector. The AE stage of the telescope is a DSSSD silicon
detector, ~48 um thick, with an active area of 5x5 cm and 16 vertical and 16 horizontal strips.
The E stage is a silicon detector, 530 um thick. The AE detector is placed over the thick E
detector and captures the recoil ion energy of the 2 reaction products *He and “He that they
lose as they pass through the detector. The E detector, as a thick detector, does not allow the
particles to pass through, thereby capturing the total energy (E). Its depletion layer is thick
enough in order to cover the whole range from the incident point to the stop point of the
particles. Using the AE - E technique, the particles can be identified via the Z separation
[51,57]. Today the improvement of the DINEX telescope is known as the GLORIA telescope
(Global Reaction Array) and in the present work only one of its telescopes has been used.
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2. Experimental details

2.1 Experimental setup

The experiment was performed at the Instituto Nazionali di Fisica Nucleare- Laboratori
Nazionali del Sud in Catania (INFN-LNS), Italy. A view of the experimental hall where our
study took place is presented in Figure 2.1. The system under study was the °Li + p in inverse
kinematics. Beams of °Li were accelerated at the energies of 16, 20, 25 and 29 MeV and
impinged on a ~ 300 pg/cm? CH; target. The elastically scattered °Li ions, were directed due
to kinematical laws only at forward angles, and were momentum analyzed by the MAGNEX
spectrometer [30-34]. The analysis of elastic scattering is given in [30-31]. For the reaction
®Li + p — *He + “He which is presented in this work, measurements were performed with a
module of the DINEX telescope [51]. A schematic set up of the telescope inside the reaction
chamber is given in Figure 2.2 while a view of it in Figure 2.3 It was set at a distance 15.5
cm far from the target, allocating an angular range of 0, =16° to 34°. The angular resolution
in the lab system is £0.58°. The DINEX telescope consists of one AE detector and two E
detectors, but only one E detector is used for the present data analysis (Figure 2.4 and 2.5).
The AE stage of the telescope is a DSSSD silicon detector, 48 um thick, with an active area
of 5x5 cm and 16 vertical and 16 horizontal strips. The E stage is a silicon pad detector, 530
um thick. As the AE stage of the telescope absorbs a part of the recoil ion energy of the 2
reaction products *He and “He, it allows a Z separation via the AE - E technique.

FIG. 2.1: A photo of the experimental hall. At the right side of the picture is the chamber where the reaction
takes place, while at the left side is the MAGNEX spectrometer.
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FIG. 2.2: Schematic representation of the reaction chamber. °Li beams were accelerated at the energies 16, 20,
25 and 29 MeV and impinged on a ~ 300 pg/cm? CH, target. The reaction products 3He and 4He were
recorded by one DINEX telescope, allocating an angular range of 0, =16° to 34° at a distance of 15.5 cm far
from the target.

FIG. 2.3: View of the reaction chamber. The target holder and the DINEX telescope are shown.
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FIG. 2.4: The DINEX telescope. The AE stage of
the telescope is a DSSSD silicon detector, 48 um
thick, with an active area of 5x5 cm and 16 strips
per side. The E stage is a silicon pad detector, 530
um thick

FIG. 2.5: Another photo of the DINEX telescope.
The AE detector and the E detector can be clearly
distinguished.

All the targets were mounted in a target ladder, in the middle of the reaction chamber. The
target ladder holds the targets vertically aligned above one another, as shown in Figure 2.6.
By changing the height of the ladder, any one of the targets could be positioned in the beam.
From top to the bottom we can see a *2C target , which is used for energy calibration
purposes as it is described in chapter 2.2, and it is also used for estimating the background
due to carbon. It is followed by one of the CH, targets, 308 pg/cm? thick which is used for
the main reaction measurement at the energies of 16, 25, and 29 MeV, while the last CH,
target, 489 ug/cm? thick is used at the energy of 20 MeV. The **’Au target is used for the
determination of solid angle and for energy calibration purposes, as it is described in the
chapter 2.2 and 2.3. The Quartz and the Allumina is used for the alignment of the beam.
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FIG. 2.6: Schematic representation of the target holder.

Detectors provide information on detected radiation in the form of electrical pulse signals. In
order to extract the information which is provided by the detectors, the signal must be further
processed by an electronic system as shown in figure 2.7.
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FIG. 2.7 : Schematic representation of the electronic modules used in the experiment.

The output of the AE detector was connected to a Mesytec preamplifier (MPR-64 with 4x16
channels). The preamplifier provides an interface between the detector and the pulse
processing electronics, amplifying weak signals from the detector, and shapes the subsequent
output pulses. The linear output signals (energy and time signals) from the preamplifier
were fed to a compact Mesytec electronic unit (STM-16) , providing amplification and
discrimination. From that electronic unit two kind of signals went out. A logical signal which
went to the OR unit and an analog signal which went to the ADC unit. The logical signal,
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which went to the OR unit, is the result of the coincidence of the logical signals coming from
the n and p side of the DSSSD detector (from the front side and the back side of the AE
detector). The output signal from the E detector was fed to a compact Mesytec unit MSI-8 (8
channel unit) providing a preamplifier, amplifier and a discriminator processing. From that
electronic unit, a logical and an analog signal went out. The logical signal was directed to the
OR unit to contribute in the gate, while the analog signal went to the ADC unit for recording
the energy. The data which came either from the AE detector or from the E detector, after
being recorded in the PC controlled acquisition system, were analyzed off line.

2.2 Energy calibration

In principle a good energy calibration is essential for the identification of the particles in a
spectrum and for an accurate data reduction. In this study the AE-E technique was enough for
the identification of the reaction products *He and “He as the Q-values of other reactions were
very different from the reaction under study. However for a “double checking” procedure and
for the global view of the study we have proceed with a detailed energy calibration of both
AE and E stages of the telescope.

It is known that the reaction °Li + p can give several channels such as the elastic channel, the
break up channel, and the compound and transfer reaction channels. Because of the CH,
target, there is also the reactions on carbon, °Li + *2C, which can give several channels, such
as the elastic channel, the break up channel, the fusion channel and transfer reaction
channels some of them giving as reaction products *He and “He. For the calculation of the
differential cross section, only the *He and the “He that originate from the reaction °Li + p —
*He + “He and not from any other channel of this reaction or from the reaction °Li + **C are
required. In order the ®He and the “He to be identified in the spectrum, a good energy
calibration is necessary.

The data analysis is performed using the program PAW [58]. For the kinematic prediction the
nuclear reaction video project [59] is adopted. Last the energy loss and the energy remaining
on E detector are obtained by taking into account the thickness of the target and of the AE
detector adopting the Lise++ program [60].
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2.2.1 Energy Calibration of AE detector

For the energy calibration of AE detector, the elastic scattering measurements performed
with a gold foil 180 pg/cm? thick and with a carbon foil 240 pg/cm? thick, at bombarding
energies 29 MeV and 25 MeV, are used (Figure 2.8 and 2.9). The energy calibration is
performed assuming a linear function (2.1) as:

E=a*channel+b (2.1)

The best fitted parameters a, b are given in Table 2.1. Some typical plots of the energy
calibration for certain strips are shown in Figures 2.10 and 2.11

TABLE 2.1: Fitted parameters a, b to a linear function for the energy calibration of AE detector. The calibration
is based on the elastic scattering measurements performed with gold and carbon foils at bombarding energies

29 MeV and 25 MeV.

strip B1an(") a b
1 16.38 0.004556 -0.386896
2 17.54 0.004816 0.000162
3 18.70 0.004912 -0.211269
4 19.86 0.005275 -0.690453
5 21.02 0.005058 -0.698301
6 22.18 0.005359 -1.178557
7 23.34 0.004657 0.430023
8 24.50 0.005017 -0.483877
9 25.66 0.005957 -1.260332
10 26.82 0.005939 -1.266226
11 27.98 0.003924 -1.682743
12 29.14 0.005956 -1.682743
13 30.30 0.006005 -1.683126
14 31.46 0.005762 -1.810744
15 32.62 0.006223 -1.993463
16 33.78 0.005029 -1.06319
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FIG. 2.8: A typical two dimension spectrum AE-E
collected at 0),,=26° for the elastic scattering oL +
2C — ®Li+ *C at bombarding energy 25 MeV .
The red spot corresponds to °Li .
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FIG. 2.10: Energy versus channel plot for the
energy calibration of AE detector. It corresponds to
the first strip (0,,=16"). Data are designated with
the red cubes while the black solid line corresponds
to the best fit assuming a linear function.
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For the verification of the energy calibration of AE detector, the first solution of *He and of
*He from the reaction °Li + p — 3He + “He at bombarding energy 29 MeV are used. The
deviations between the experimental energy and the energy from kinematical prediction are
shown in Table 2.2 and Table 2.3. Also extensive tables with the energies from kinematical
prediction for the reaction products *He and “He, for all the beam energies, are presented in
appendix D.

TABLE 2.2: Experimental energies via our energy calibration for the 1% kinematic solution of *He originating
from the reaction °Li+ p — ®He + *He at 29 MeV, are compared with the theoretical values. The deviation of
experimental and theoretical values is also presented.

strip 01a0(") E predicted (MeV) E experimental (MeV) % deviation
1 16.38 1.8481 1.7493 5.35
2 17.54 1.8782 2.0294 8.05
3 18.70 1.9127 1.9434 1.61
4 19.86 1.9469 1.7062 12.36
5 21.02 1.9883 1.6119 18.93
6 22.18 2.0323 1.5106 25.67
7 23.34 2.0822 2.5960 24.68
8 24.50 2.1368 2.0287 5.05
9 25.66 21971 1.6359 25.54
10 26.82 2.2649 1.7292 23.65
11 27.98 2.3399 3.2992 41.00
12 29.14 2.4249 1.6138 33.45
13 30.30 2.5213 1.7236 31.64
14 31.46 2.6278 1.7580 33.10
15 32.62 2.7573 1.9085 30.78
16 33.78 2.9041 2.4219 16.60

(39]




TABLE 2.3: Same as in Table 2.1 but for the reaction product “He.

strip B1an(") E predicted (MeV) E experimental (MeV) % deviation
1 16.38 2.25 2.23 0.89
2 17.54 2.31 2.51 8.66
3 18.70 2.37 2.46 3.70
4 19.86 2.44 2.30 5.74
5 21.02 2.52 2.34 7.14
6 22.18 2.61 2.28 12.64
7 23.34 2.73 3.26 19.41
8 24.50 2.86 2.84 0.70
9 25.66 3.03 2.71 10.56
10 26.82 3.25 3.01 7.38
11 27.98 3.55 434 22.25
12 29.14 4.07 3.59 11.79

The deviations between the energy from kinematic prediction and the experimental energy, in
some strips are not small. This is due to the fact that the main measurement with the CH,
target followed several days after the calibration ones and it is apparent that the amplification
conditions might have changed in some strips.

However, this has no effect on the analysis of the AE-E peaks of *He and “He. The peaks
from the first solution of *He and of “He can be well identified. No other peaks are included
He and of “He cannot be identified as
they stop in the first stage. The second solution of *He cannot be seen anyhow because of the
high discrimination threshold, while the second solution of “He is below a high continuous
background and as a result it cannot be observed (Figure 2.12).

from other channels nearby. The second solution of
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FIG. 2.12: A typical calibrated one dimension AE- spectrum collected at 6,,,=16°, for the reaction oLi + p at
bombarding energy 29 MeV without any condition. The energies from kinematic prediction on AE detector for
the second solution of *He and of “He from the reaction  °Li + p — °He + “He are shown. The pink arrow
represents the expected energy for the 2™ solution of °He, while the brown arrow represents the expected
energy for the 2" solution of “He. Peaks for the second solution of *He and “He cannot be seen due to a high
discrimination threshold and the large background respectively.

2.2.2 Energy calibration of E detector

The energy calibration of E detector is based on the elastic scattering measurements
performed with a carbon foil 240 pg/cm? thick at bombarding energies 29 MeV and 25 MeV
(Figure 2.13). The equations of the energy calibration are linear according to the formula
(2.2):

E=a*channel+b (2.2)

The parameters a, b are given in Table 2.4. Some indicative equations of the energy
calibration are shown in Figure 2.14 and Figure 2.15
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TABLE 2.4: Fitted parameters a, b of a linear function for the energy calibration of E detector. The calibration
is based on the elastic scattering measurements performed with carbon foils at bombarding energies 29 MeV

and 25 MeV.

strip 01a0(") a b
1 16.38 0.007 -0.766
2 17.54 0.007 -1.124
3 18.70 0.007 -1.326
4 19.86 0.007 -1.389
5 21.02 0.007 -1.884
6 22.18 0.007 -1.663
7 23.34 0.007 -1.771
8 24.50 0.007 -3.118
9 25.66 0.006 -0.987
10 26.82 0.006 -0.158
11 27.98 0.007 -1.369
12 29.14 0.007 -1.985
13 30.30 0.007 -1.928
14 31.46 0.007 -2.217
15 32.62 0.006 -0.363
16 33.78 0.007 -2.012
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FIG. 2.13: A typical one dimension E- spectrum collected at 0,,,=16° for the elastic scattering °Li + 2C — °Li +
2C at bombarding energy 25 MeV. The peak corresponds to °Li on E detector.
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For the verification of the energy calibration of E detector, the first solution of *He and of
*He from the reaction °Li + p — *He + *He at the bombarding energy 29 MeV are used.
The deviations between the experimental energy and the predicted energy from kinematics
are shown in Table 2.5 and Table 2.6

TABLE 2.5: The predicted energy from kinematics (theoretical values) are compared with the experimental
values for the energy of the 1% solution for *He from the reaction °Li + p — *He + *He at 29 MeV. The
deviation between theory and experiment is also presented.

strip B1an(") E predicted (MeV) E experimental (MeV) % deviation
1 16.38 23.83 22.45 5.82
2 17.54 23.30 22.20 4.74
3 18.70 22.72 21.65 4,71
4 19.86 22.13 20.85 5.78
5 21.02 21.49 20.17 6.13
6 22.18 20.81 19.12 8.12
7 23.34 20.10 19.05 5.22
8 24.50 19.36 18.75 3.15
9 25.66 18.59 16.49 11.26
10 26.82 17.77 16.74 5.75
11 27.98 16.93 16.53 2.37
12 29.14 16.03 14.87 7.27
13 30.30 15.12 13.64 9.79
14 31.46 14.17 12.78 9.78
15 32.62 13.13 12.07 8.07
16 33.78 12.08 11.13 7.91
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TABLE 2.6: Same as in Table 2.5 but for the 1% solution of “He.

strip B1an(") E predicted (MeV) E experimental (MeV) % deviation
1 16.38 24.12 23.33 3.29
2 17.54 23.31 22.41 3.82
3 18.70 22.42 21.35 4.79
4 19.86 21.48 20.10 6.44
5 21.02 20.46 19.01 7.07
6 22.18 19.36 17.68 8.70
7 23.34 18.16 17.09 5.91
8 24.50 16.85 15.72 6.67
9 25.66 15.42 13.47 12.63
10 26.82 13.80 12.99 5.87
11 27.98 11.86 11.33 4.45
12 29.14 9.24 7.98 13.61

As it can be seen, the deviations between the energy predicted from kinematics and the
experimental energy do not exceed a 10% variation, but are not the same for all the strips due
the possible different conditions of the amplification during the experiment.

2.3 Determination of solid angle

In general, the solid angle, for ideal conditions of point source and large distances between
radiated source and detectors, is given by the relation (2.3):

Q=— (2.3)

where
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S is the surface of the detector
R is the distance between the detector and the target.

In the present study, a more precise way is used for the definition of solid angle as neither of
the ideal conditions is due. The solid angle for each strip is determined with an elastic
scattering measurement performed with a gold foil 180 pg/cm? thick, at one of the lower
energies, namely 25 MeV, where the scattering can be considered as pure Rutherford. Data at
16 MeV were not considered for the solid angle, as the dead time was very high and the
introduced error to the measurement was estimated to be very large. The energy has been
chosen after calculating the Coulomb barrier (Ecpgan). ~30MeV), via the code described in
Appendix B.

The solid angle is then deduced via the relation (2.4):

B N
d*D*o

Ruth.

Q (2.4)

where:

N represents the number of counts per time, @ is the flux of the beam, D are the scattering
centers of gold and Gryh. is the Rutherford cross section. When Gryh. IS expressed in mbarn,

@ in particles per time, and D in atoms per cm?, the solid angle is expressed in steradian after
the fraction is multiplied with 10%, as 1 mbarn=10%"cm? .

The calculations are performed with the LISE++ program assuming that the reaction takes
place in the middle of the target. The flux of the beam was recorded in the Faraday cup and
the accuracy of the flux intensity measurement was confirmed via the Rutherford scattering
of °Li on hydrogen, recorded in MAGNEX [30]. The solid angle and the error for each strip
are shown in Table 2.7. The error of solid angle is calculated according to the following
formula (2.5) deduced in Appendix A:

*(N+O.OO5*NZ)% (2.5)
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TABLE 2.7: The solid angle and the error for each strip, as determined with the elastic scattering measurement
performed with a gold foil at 25MeV, where the scattering can be considered as pure Rutherford.

strip B1an(") Q(sr) error Q(sr)
1 16.38 0.00145 0.00010
2 17.54 0.00169 0.00012
3 18.70 0.00176 0.00013
4 19.86 0.00181 0.00013
5 21.02 0.00185 0.00013
6 22.18 0.00186 0.00013
7 23.34 0.00193 0.00014
8 24.50 0.00196 0.00014
9 25.66 0.00197 0.00014
10 26.82 0.00199 0.00014
11 27.98 0.00202 0.00014
12 29.14 0.00202 0.00014
13 30.30 0.00208 0.00015
14 31.46 0.00207 0.00015
15 32.62 0.00206 0.00015
16 33.78 0.00149 0.00011

Errors adopted in the solid angle deduction apart of the statistical error are: a 5% error in the
estimation of the target thickness and a 5% error in the measured integrated beam charge.

After the determination of solid angle and the good energy calibration of the detectors, the
next step is the calculation of the angular distribution of the reaction.
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3. Data reduction

3.1 Angular distribution measurements

Angular distribution measurements were performed at the energies 16, 20, 25 and 29 MeV,
by detecting both reaction products *He and “He at an angular range 0= 16° to 34°. This
angular range corresponds in the center of mass system to 0= 40° to 140°. The *He and *He
reaction products were well resolved via the AE - E technique, as can be seen in a typical bi-
dimensional spectrum AE- E, in Figure 3.1. The red spot corresponds to “He, while the green
spot corresponds to ®He. The “He peak, that comes from the under study reaction, is sitting on
the top of a continuous background originating from breakup processes on hydrogen and on
carbon as well as from fusion reactions on carbon. The background reduction can be achieved
via two methods. In the first method, which is finally adopted in our analysis, the background
subtraction is made by placing the windows left and right to the "peak” in the two dimension
spectrum which with the appropriate normalization to the peak area, gives the background
counts. In a second scenario which is adopted only for one energy for reasons of comparison,
the deduction of the background was obtained by using the data collected with the carbon
target. In this respect alpha originating from reactions on carbon can be eliminated. Alpha
originating from breakup on hydrogen are considered to be minimum and are not taken into
account. This procedure follows in two steps: First the alpha of the reaction °Li + **C (Figure
3.3), are appropriately normalized in flux and scattering centers to the run with the CH, target
(Figure 3.4). Subsequently they are subtracted from the alpha of the reaction °Li + p (Figure
3.2). The remaining alpha are those from the under study reaction (Figure 3.5.) The analysis
of the last spectrum gives results in good agreement with the deduced via the first method. As
the error here is larger than the first method, the last is adopted for the background analysis.

Our analysis includes the following steps.

e Single *He and ®He single spectra are formed with the appropriate conditions in two
dimensional spectra.

o The *He and *He peaks are integrated and relevant counts are extracted

e Taking into account the details of measurement, differential cross sections are formed

The differential cross sections for all beam energies are calculated via the formula:

do(®)  N(©)
do O*Q*D

(3.1)

where;
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j—g Is the differential cross section at angle 6, N are the number of counts per time at angle 6
, @ is the flux of the beam, Q is the solid angle and D are the scattering centers of hydrogen.
The solid angle was determined in chapter 2.3, while the flux of the beam was recorded in the
Faraday cup. The accuracy of the flux intensity measurement was tested via the scattering
measurement of °Li on hydrogen, recorded in MAGNEX [30], where the scattering was
considered to be Rutherford. The differential cross sections are extracted in units of mbarn
per steradian as long as the flux is expressed in particles per time, the solid angle in steradian,
and the scattering centers in atoms per cm®. This quantity has to be multiplied by 10" as 1
mbarn=10%"cm?.

The error of the differential cross section in the laboratory system is calculated according to
the formula (3.2). For the error calculation, the errors which are adopted are the statistical
error, a 5% error in the estimation of the target thickness, a 5% error in the measured
integrated beam charge and a 7% error due to the solid angle measurement. The deduction of
the differential cross section error is presented in appendix E.

The obtained differential cross sections for all the beam energies are extensively presented in
chapters 3.1.1 to 3.1.4.
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FIG. 3.1: A two dimensional spectrum AE-E collected at 6,,,=20° for the reaction °Li + p > *He + “He at
bombarding energy 29 MeV. The red spot corresponds to “He and the green spot corresponds to *He.
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3.1.1 Angular distribution at E,;,=16 MeV

At the bombarding energy of 16 MeV, the differential cross section is calculated according to
the formula (3.1) for the laboratory system and it is converted to the center of mass frame via
the code in appendix C. The scattering centers of hydrogen are taken as 0.265012*10%°
atoms/cm? and the flux of the beam is 3.38*10% particles/sec as it was recorded in the
Faraday cup. The counts of each strip are shown in Table T3.1 in appendix D. The
differential cross section and the error for each strip are indicated in Table 3.1. The error of
the differential cross section, in the laboratory system, is calculated according to the formula
(3.2), which is deduced in appendix E.

TABLE 3.1.a: Differential cross sections in the laboratory and the center of mass frame as well as the
associated error in the c.m system are given for each strip for the reaction product *He, at bombarding energy
Elab=16 MeV.

Oia(*) | Bem (") j_glab(mbsr) j—;cm(mbsr) A(ﬁcm](mbsr) ez;:)r
“He | 16.38 | 44.95 66.33 9.28 0.93 10.02
“He | 17.54 | 48.25 66.84 9.36 0.94 10.04
“He | 18.70 | 51.65 66.96 9.39 0.94 10.01
‘He | 19.86 | 55.05 71.46 10.03 1.01 10.07
“He | 21.02 | 58.45 69.16 9.71 0.98 10.09
“He | 22.18 | 61.95 68.32 9.59 0.96 10.01
“He | 23.34 | 65.55 63.19 8.86 0.89 10.05
‘He | 24.50 | 69.15 61.44 8.59 0.86 10.01
“He | 25.66 | 72.95 67.44 9.39 0.94 10.01
“He | 26.82 | 76.75 64.96 8.98 0.90 10.02
‘He | 27.98 | 80.75 66.14 9.05 0.91 10.06
‘He | 29.14 | 84.85 61.54 8.29 0.84 10.13
“He | 30.30 | 89.15 56.24 7.41 0.75 10.12
“He | 31.46 | 93.75 60.49 7.69 0.78 10.14
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TABLE 3.1.b: Differential cross sections in the laboratory and the center of mass frame as well as the
associated error in the c.m system are given for each strip for the reaction product *He, at bombarding energy
Elab=16 MeV.

oty | o p j—glab(mbsr) j_gcm(mbsr) A(%ij(mbsr) rror 9%
*He | 33.78 | 101.25 33.26 7.50 0.76 10.13
He | 32.62 | 104.05 31.98 7.14 0.72 10.08
*He | 31.46 | 106.95 33.97 7.51 0.76 10.12
*He | 30.30 | 109.75 33.69 7.38 0.75 10.16
*He | 29.14 | 11255 35.05 7.61 0.77 10.12
He | 27.98 | 115.35 34.93 7.51 0.76 10.12
He | 26.82 | 118.15 37.45 7.98 0.81 10.15
*He | 25.66 | 120.95 37.46 7.92 0.80 10.10
*He | 24.50 | 123.65 36.63 7.68 0.78 10.15
He | 23.34 | 126.45 36.91 7.68 0.77 10.03
He | 22.18 | 129.15 41.04 8.47 0.85 10.04
*He | 21.02 | 131.85 42.18 8.65 0.87 10.06
He | 19.86 | 134.55 43.23 8.80 0.89 10.11
He | 18.70 | 137.25 46.34 9.38 0.95 10.13
*He | 17.54 | 139.95 47.02 9.46 0.95 10.04
*He | 16.38 | 142.65 51.58 10.32 1.04 10.08

The reaction product He is observed from 0. m=101° to 143°, while the “He from 0.y, = 45°
to 94°. The differential cross sections are presented in Figure 3.6 and they are compared with
previous measurements from Lin et al. [18] and from Elwyn et al. [20]. The data from Lin et
al. are not in a good agreement with the data from Elwyn et al., but they seem to agree well
with the present data at the more backward angles. At the more forward angles, the present
data seem to be located between the two previous measurements. Finally, for the extraction
of reaction cross sections, the differential cross sections are fitted by a sum of Legendre

1
polynomials ZBlPl (cos(e)). The best fit to the data (4 terms of Legendre polynomials) is
1=0
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represented with the pink dotted-dashed line in Figure 3.6, while the blue solid line represents
theoretical calculations for the determination of the reaction mechanism, performed by Dr N.
G. Nicolis [43, 57] . In Figure 3.7 different fits to the data depending on 4, 5 and 7 terms in
the sum of Legendre polynomials are represented for probing uncertainties due to the fit. The
different fits give approximately the same reaction cross section with deviations no more than
2%, as it can be seen in Table 3.2, where the coefficients of the Legendre polynomials are
presented. However, the shape of the fit with 7 terms differs from the shape of the fits with 4
and 5 terms, at the forward and at the background angles, but it cannot be verified as data
exist only from 6.,=40° to 140°. Subsequently an uncertainty band was formed for the
angular distribution due to the statistical errors of the differential cross sections indicating an
upper limit to the obtained uncertainty of the reaction cross section. The angular distribution
of the reaction at 16 MeV, the best fit to the data and the uncertainty band are represented in
Figure 3.8. The uncertainty band corresponds to a 10% error for the reaction cross section.
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FIG. 3.6 Angular distribution data for the reaction °Li + p — *He + *He at bombarding energy 16 MeV (2.7
MeV/u) are compared with previous data [18,20], and with theoretical calculations performed by Dr N. G.
Nicolis [43, 57] . The vertical error is due to a statistical error which is less than 1% and mainly due to an error
7% of the solid angle, 5% of the intensity of the beam and 5% of the thickness of the target. The horizontal error
due to the angular uncertainty is approximately +£2° and is included in the size of the data points.
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FIG. 3.8: Angular distribution data for the reaction °Li + p — *He + *He at bombarding energy 16 MeV. The
blue solid line represents the best fit to the data (fourth order Legendre polynomial fit), while the red and the
green dotted-dashed lines define the uncertainty band for a 10% error to the reaction cross section -B, term of
the Legendre polynomial.

TABLE 3.2: Values of coefficients B, in the expansion of the differential cross section in the center of mass

1
frame into a series of Legendre polynomials do/da = ZBlpl (Cose) at bombarding energy 16 MeV.
1=0

Bo Bl B2 B3 B4 BS B6 or=4nBo (mb)
4 terms | 8.7938 | -0.4002 | 1.6557 | -2.5278 110
Sterms | 8.7808 | -0.4129 | 1.6099 | -2.544 | -0.0474 110
7 terms | 9.0322 | -0.5816 | 2.6729 | -2.8275 | 1.1002 | -0.2684 | 0.7720 113
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The reaction cross section is calculated via the formula
o =4mB, (3.3)

where By is the zero order coefficient from Legendre polynomials to which the data are
fitted. The reaction cross section for the bombarding energy of 16 MeV is obtained by taking
the mean value of the reaction cross sections coming from the fits with 4 terms, 5 terms and 7
terms, while the standard deviation of the mean value is calculated according to the equation
(3.4):

(3.4)

Therefore, the mean value of the reaction cross section, at bombarding energy 16 MeV, is
111 mb and the standard deviation of the mean value is 2 mb. This error is modified
quadratically due to the statistical uncertainty (upper limit of 10%) of the measured
differential cross sections.

3.1.2 Angular distribution at E,;»,=20 MeV

At the bombarding energy of 20 MeV, the differential cross section is calculated according to
the formula (3.1) for the laboratory system and it is converted to the center of mass frame via
the code in appendix C. The scattering centers of hydrogen are 0.42075*10%° atoms/cm? and
the flux of the beam is 30.35*10" particles/sec as it was recorded in the Faraday cup. The
counts of each strip are shown in the Table T3.2 in appendix D. The differential cross section
and the error for each strip are shown in Table 3.3. The error of the differential cross section
in the laboratory system, is calculated according to the formula (3.2), which is deduced in
appendix E.
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TABLE 3.3.a: Differential cross sections in the laboratory and the center of mass frame as well as the
associated error in the c.m system are given for each strip for the reaction product “He, at bombarding energy
Elab=20 MeV.

do Error

00 | O | a2 ("Pr) %Cm(mbsr) A(i—icm](mbsr) %
“He | 17.54 | 50.75 98.95 12.55 1.26 10.04
*He | 18.70 | 54.35 100.48 12.73 1.27 9.98
“He | 19.86 | 57.95 94.30 11.92 1.19 9.98
“He | 21.02 | 61.65 99.82 12.58 1.26 10.02
“He | 22.18 | 65.45 90.44 11.34 1.14 9.98
“He | 23.34 | 69.35 85.30 10.62 1.06 9.98
“He | 24.50 | 73.35 84.54 10.42 1.04 9.98
“He | 25.66 | 77.45 88.11 10.71 1.07 9.99
“He | 26.82 | 81.85 96.61 11.51 1.15 9.99
“He | 27.98 | 86.35 98.47 11.39 1.14 10.01
“He | 29.14 | 91.25 92.52 10.25 1.03 10.05
“He | 30.30 | 96.65 97.87 10.12 1.02 10.08
“He | 31.46 | 102.85 100.87 9.22 0.93 10.09

(58]



TABLE 3.3.b: Differential cross sections in the laboratory and the center of mass frame as well as the
associated error in the c.m system are given for each strip for the reaction product *He, at bombarding energy
Elab=20 MeV.

do Error

00 | O | a2 ("Pr) %Cm(mbsr) A(i—icm](mbsr) %
*He | 33.78 | 97.05 45.57 9.27 0.93 10.03
*He | 32.62 | 100.15 44.87 9.07 0.91 10.03
*He | 31.46 | 103.25 44.94 9.02 0.91 10.09
*He | 30.30 | 106.35 4481 8.94 0.90 10.07
*He | 29.14 | 109.35 46.01 9.11 0.91 9.99
*He | 27.98 | 112.35 45.86 9.01 0.90 9.99
*He | 26.82 | 115.25 46.68 9.11 0.91 9.99
*He | 25.66 | 118.25 46.90 9.09 0.91 10.01
*He | 24.50 | 121.15 47.43 9.13 0.91 9.97
*He | 23.34 | 124.05 48.83 9.34 0.94 10.06
*He | 22.18 | 126.85 52.67 10.00 1.00 10.00
*He | 21.02 | 129.75 52.70 9.95 1.00 10.05
*He | 19.86 | 132.55 55.32 10.38 1.04 10.02
*He | 18.7 | 135.35 58.05 10.83 1.08 9.97
*He | 17.54 | 138.25 60.77 11.28 1.13 10.02
*He | 16.38 | 141.05 64.02 11.82 1.18 9.98

The reaction product *He is observed from 0., =97° to 141°, while the *“He from 0., =47" to
103°. At the angular region from 0.,»=97° to 103°(overlapping region), where data exist for
both reaction products *He, “He, the differential cross sections present very good agreement
between theirselves, as it can be seen in Table 3.4. The agreement of these differential cross
sections indicates the accuracy of the subtraction of the background for “He. The differential
cross sections are presented in Figure 3.9 and they are compared with previous measurements
from Gould et al. [27]. The present results are not in a good agreement with them. Finally, for
the extraction of the reaction cross sections, the differential cross sections are fitted by a sum

of Legendre polynomials iBlpl(cos(e)). The best fit to the data (4 terms of Legendre
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polynomials) is represented with the pink dotted-dashed line in Figure 3.9, while the blue
solid line represents theoretical calculations for the determination of the reaction mechanism
performed by Dr N.G. Nicolis [43,57]. In Figure 3.10, different fits to the data depending on
4,5 and 7 terms in the sum of Legendre polynomials are represented for probing uncertainties
due to the fit. The different fits give approximately the same reaction cross section with
deviations no more than 6%, as it can be seen in Table 3.5, where the coefficients of the
Legendre polynomials are presented. However, the shape of the fit with 7 terms differs from
the shapes of the fit with 4 and with 5 terms, at the forward and at the background angles, but
it cannot be verified, as data exist from 6. ,=40° to 140°. Subsequently, an uncertainty band
is formed for the angular distribution due to the statistical errors of the differential cross
sections corresponding to a 10% error to the reaction cross section. The angular distribution
data of the reaction at 20 MeV, the best fit to the data and the uncertainty band are
represented in Figure 3.11.
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FIG. 3.9: Angular distribution data for the reaction °Li + p — *He + “He at bombarding energy 20 MeV (3.3
MeV/u) are compared with previous data [27] and with theoretical calculations performed by Dr N. G. Nicolis
[43, 57] . The vertical error is due to a statistical error which is less than 1% and mainly due to an error 7% of
the solid angle, 5% of the intensity of the beam and 5% of the thickness of the target. The horizontal error due to
the angular uncertainty is approximately £2° and is included in the size of the data points.
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FIG. 3.10: Angular distribution data for the reaction °Li + p — *He + “He at bombarding energy 20 MeV. The
light blue dotted-dashed line represents the fourth order Legendre polynomial fit to the data, the pink dotted-
dashed line represents the fifth order Legendre polynomial fit to the data, while the red dotted-dashed line

represents the seventh order Legendre polynomial fit.

TABLE 3.4: Results of overlap angles in the center of mass frame at bombarding energy 20 MeV.

(

). (7

Ocm *He *He
96.65 9.27 10.12
100.15 9.07 9.61
102.85 9.02 9.22
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FIG. 3.11: Angular distribution data for the reaction °Li + p — *He + “He at bombarding energy 20 MeV. The
blue solid line represents the best fit to the data (fourth order Legendre polynomial fit), while the red and the
green dotted-dashed lines define the uncertainty band for a 10% error to the reaction cross section -B, term of
the Legendre polynomial.

TABLE 3.5: Values of coefficients B, in the expansion of the differential cross section in the center of mass

frame into a series of Legendre polynomials q5/q0 = Zl:Blpl (cose) at bombarding energy 20 MeV.

1=0

Bo Bl B2 B3 B4 B5 B6 or=4nBo (mb)
4terms | 10.9942 | 0.4164 | 2.0624 | -2.6890 138
Sterms | 11.8187 | 1.5650 | 5.0302 | -1.4286 | 2.3541 148
7 terms | 10.5673 | 0.5643 | 0.0606 | -2.7372 | -2.5635 | -0.5104 | -2.5462 133

For each fit the reaction cross section is calculated according to the equation (3.3), where By
is the zero order coefficient from Legendre polynomials to which the data are fitted. The final
reaction cross section for the bombarding energy of 20 MeV is obtained by taking the mean
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value of the reaction cross sections coming from the fits with 4 terms, 5 terms and 7 terms,
while the standard deviation of the mean value is calculated according to the equation (3.4).

Therefore, the adopted value for the reaction cross section of °Li + p — *He + “*He , at
bombarding energy 20 MeV, is 140 mb and the standard deviation of the mean value is 8
mb. This error is modified at most quadratically due to the statistical uncertainty (upper limit
of 10%) of the measured differential cross sections.

3.1.3 Angular distribution at E,;,=25 MeV

At the bombarding energy of 25 MeV, the differential cross section is calculated according to
the formula (3.1) for the laboratory system and it is converted to the center of mass frame via
the code in appendix C . The scattering centers of hydrogen are 0.265012*10%° atoms/cm?
and the flux of the beam is 15.53*10" particles/sec as it was recorded in the Faraday cup.
The counts of each strip are shown in the Table T3.3 in appendix D. The differential cross
section and the error for each strip are indicated in Table 3.6. The error of the differential
cross section in the laboratory system is calculated according to the formula (3.2), which is
deduced in appendix E.

TABLE 3.6.a: Differential cross sections in the laboratory and the center of mass frame as well as the
associated error in the c.m system are given for each strip for the reaction product “He, at bombarding energy
Elab=25 MeV.

do

0l | Oem(®) d_Qlab(mbsr) j—gcm(mbsr) A(j—écm}(mbsr) E;or
“He | 16.38 | 49.55 103.10 11.93 1.19 9.97
‘He |18.70 | 57.15 111.30 12.78 1.28 10.02
‘He |19.86 | 61.05 111.11 12.67 1.27 10.02
“He | 21.02 | 65.05 105.03 11.88 1.19 10.02
‘He |22.18 | 69.25 115.40 12.91 1.29 9.99
‘He |23.34| 73.45 103.59 11.41 1.14 9.99
‘He | 2450 | 77.95 112.61 12.13 1.22 10.06
‘He | 25.66 | 82.65 117.63 12.29 1.23 10.01
‘He |26.82 | 87.75 117.05 11.70 1.17 10.00
“He,*He | 27.98 | 92.85 80.34 9.62 1.05 10.91
‘He |29.14 | 99.75 105.22 8.68 0.87 10.02
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TABLE 3.6.b: Differential cross sections in the laboratory and the center of mass frame as well as the
associated error in the c.m system are given for each strip for the reaction product *He, at bombarding energy
Elab=25 MeV.

do
o) )| V2] SZen(o) | o SZen)) | T
He | 32.62 | 95.85 48.84 8.88 0.89 10.02
He | 31.46 | 99.25 48.39 8.79 0.88 10.01
He | 30.30 | 102.6 47.10 8.53 0.86 10.08
*He | 29.14 | 105.9 4552 8.21 0.82 9.99
*He | 27.98 | 109.1 46.75 8.40 0.84 10.00
He | 26.82 | 112.3 47.00 8.41 0.84 9.99
He | 25.66 | 115.4 47.17 8.40 0.84 10.00
*He | 24.50 | 118.5 47.21 8.36 0.84 10.05
*He | 23.34 | 121.6 44.63 7.86 0.79 10.05
He | 22.18 | 124.6 49.90 8.74 0.88 10.07
*He | 21.02 | 127.6 50.83 8.86 0.89 10.05
He | 19.86 | 130.6 50.33 8.73 0.88 10.08
He | 18.70 | 133.6 51.71 8.93 0.89 9.97
He | 17.54 | 136.5 54.95 9.44 0.95 10.06
*He | 16.38 | 139.5 55.48 9.49 0.95 10.01

The reaction product *He is observed from 6.m=96° to 140°, while the *“He from 6¢m=50° to
100°. At the angular region from 6., =96" to 100°(overlapping region), where data exist for
both reaction products ®He, *He, the differential cross sections present an agreement between
theirselves, as it can be seen in Table 3.7. The agreement of these differential cross sections
indicates the accuracy of the subtraction of the background. The differential cross sections are
presented in Figure 3.12 and they are compared with previous measurements from Gould et
al. [27]. There is an agreement between the present data and the results from Gould et al..For
the extraction of the reaction cross section, the differential cross sections are fitted by a sum

of Legendre polynomials Zl:BlPl(cos(e))- The best fit to the data (4 terms of Legendre
polynomials) is represented with the pink dotted-dashed line in Figure 3.12, while the blue
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solid line represents theoretical calculations for the determination of the reaction mechanism,
performed by Dr N.G. Nicolis [43,57]. In Figure 3.13 different fits to the data depending on
4,5 and 7 terms in the sum of Legendre polynomials are represented for probing uncertainties
due to the fit. The different fits give approximately the same reaction cross section with
deviations no more than 5%, as it can be seen in Table 3.8, where the coefficients of the
Legendre polynomials are indicated. The shape of the fit with 7 terms differs from the shapes
of the fit with 4 terms and with 5 terms, at the forward and at the background angles, but it
cannot be verified as data exist from 0,,n,=40" to 140°. Subsequently, an uncertainty band is
formed for the angular distribution due the statistical errors of the differential cross sections
indicating an upper limit to the obtained uncertainty of the reaction cross section. The angular
distribution of the reaction at 25 MeV, the best fit to the data and the uncertainty band are
represented in Figure 3.14. The uncertainty band corresponds to a 10% error for the reaction
Cross section.
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FIG. 3.12: Angular distribution data for the reaction °Li + p — *He + “He at bombarding energy 25 MeV (4.17
MeV/u) are compared with previous data [27] ,and with theoretical calculations performed by Dr N. G. Nicolis
[43, 57]. The vertical error is due to a statistical error which is less than 1% and mainly due to an error 7% of the
solid angle, 5% of the intensity of the beam and 5% of the thickness of the target. The horizontal error due to the
angular uncertainty is approximately +3° and is included in the size of the data points.
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FIG. 3.13: Angular distribution data for the reaction °Li + p — *He + “He at bombarding energy 25 MeV. The
light blue dotted-dashed line represents the fourth order Legendre polynomial fit to the data, the pink dotted-
dashed line represents the fifth order Legendre polynomial fit to the data, while the red dotted-dashed line
represents the seventh order Legendre polynomial fit.

Table 3.7: Results of overlap angles in the center of mass frame at bombarding energy 25 MeV .

(92) (m52.)

Oc *He “He
99.25 8.79 8.68
95.85 8.88 9.21

(66]




B present data

= best fit

A =1 estimated uncertainty
estimated uncertainty

2

0 20 40 60 80 100 120 140 160 180

0. (deg)

FIG. 3.14: Angular distribution data for the reaction °Li+ p — *He + “He at bombarding energy 25 MeV. The
blue solid line represents the best fit to the data (fourth order Legendre polynomial fit), while the red and the
green dotted-dashed lines define the uncertainty band for a 10% error to the reaction cross section -B, term of
the Legendre polynomial.

TABLE 3.8: Values of coefficients B in the expansion of the differential cross section in the center of mass

frame into a series of Legendre polynomials 45/q0 — Zl:BlPl (cose)at bombarding energy 25 MeV.
1=0

Bo B1 B2 B3 B4 B5 B6 | o,=4nBo (mb)
4 terms | 10.3533 | 0.3762 | 0.0222 | -4.7375 130
5terms | 10.0484 | 0.0248 | -1.0789 | -5.1221 | -0.8903 126
7 terms | 10.9398 | 4.0255 | 2.0707 | 0.5643 | 1.5891 | 3.2563 | 0.3341 137

The reaction cross section is calculated according to the equation (3.3), where By is the zero
order coefficient from Legendre polynomials to which data are fitted. The reaction cross
section for the bombarding energy of 25 MeV is obtained by taking the mean value of the
reaction cross sections coming from the fits with 4 terms, 5 terms and 7 terms, while the
standard deviation of the mean value is calculated according to the equation 3.4.

[67]



Therefore, the mean value of the reaction cross section, at bombarding energy 25 MeV, is
131 mb and the standard deviation of the mean value is 6 mb. This error is modified
quadratically at most by 10% due to the statistical uncertainty of the measured differential
Cross sections.

3.1.4 Angular distribution at E,;,=29 MeV

At the bombarding energy of 29 MeV, the differential cross section is calculated according to
the formula (3.1) for the laboratory system and it is converted to the center of mass frame via
the code in appendix C. The scattering centers of hydrogen are 0.265012*10%° atoms/cm? and
the flux of the beam is 33.47*10% particles/sec, as it was recorded in the Faraday cup. The
counts of each strip are shown in the Table T3.4 in appendix D. The differential cross section
and the error for each strip are indicated in Table 3.9. The error of the differential cross
section in the laboratory system is calculated according to the formula (3.2) which is deduced
in appendix E.

TABLE 3.9.a: Differential cross sections in the laboratory and the center of mass frame as well as the
associated error in the c.m system are given for each strip for the reaction product “He, at bombarding energy
Elab=29 MeV.

do

)| 0 | a2V soen(L) A(j_gch(mbsr) E;Or
“He | 16.38 | 50.95 89.66 9.79 0.98 10.01
“He | 17.54 | 54.85 90.34 9.82 0.98 9.98
“He | 18.70 | 58.85 89.36 9.64 0.97 10.06
“He | 19.86 | 62.95 85.66 9.16 0.92 10.04
“He | 21.02 | 67.15 86.35 9.11 0.91 9.99
“He | 22.18 | 71.55 84.73 8.79 0.88 10.01
"He | 23.34 | 76.15 77.38 7.85 0.79 10.06
*He | 24.50 | 81.05 76.04 7.46 0.75 10.05
“He | 25.66 | 89.10 75.68 6.88 0.84 12.21
“He | 27.98 | 103.05 95.26 6.41 0.80 12.48
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TABLE 3.9.b: Differential cross sections in the laboratory and the center of mass frame as well as the
associated error in the c.m system are given for each strip for the reaction product *He, at bombarding energy
Elab=29 MeV.

do Error

00 | O | a2 ("Pr) %Cm(mbsr) A(i—icm](mbsr) %
He | 33.78 | 89.10 38.17 6.41 0.65 10.14
He | 32.62 | 92.87 37.19 6.29 0.63 10.02
He | 31.46 | 96.51 35.82 6.08 0.61 10.03
*He | 30.30 | 100.05 34.83 5.92 0.59 9.97
He | 29.14 | 103.51 35.06 5.96 0.60 10.07
*He | 27.98 | 106.89 34.10 5.78 0.58 10.03
*He | 26.82 | 110.22 33.82 5.72 0.57 9.97
*He | 25.66 | 113.49 33.64 5.67 0.57 10.05
*He | 24.50 | 116.72 30.97 5.20 0.52 10.00
*He | 23.34 | 119.90 32.52 5.44 0.55 10.11
*He | 22.18 | 123.05 33.73 5.62 0.56 9.96
He | 21.02 | 126.17 33.81 5.61 0.56 9.98
*He | 19.86 | 129.27 33.75 5.58 0.56 10.04
*He | 18.70 | 132.33 35.66 5.87 0.59 10.05
He | 17.54 | 135.38 36.80 6.03 0.60 9.95
He | 16.38 | 138.41 38.53 6.29 0.63 10.02

The reaction product He is observed from 0., =89° to 138°, while the *“He from 0,m=51° to
103°. At the angular region from 6. ,»=89° to 103° (overlapping region), where data exist for
both reaction products *He, “He, the differential cross sections present a good agreement
between theirselves, as it can be seen in Table 3.10. The agreement of these differential cross
sections indicates the accuracy of the subtraction of the background. The differential cross
sections are presented in Figure 3.15 and they are compared with previous measurements
from Gould et al. [27]. There is an agreement between the present data and the results from
Gould et al. The differential cross sections are fitted by a sum of Legendre polynomials

iBlpl (cos(e))- The best fit to the data (4 terms of Legendre polynomials) is represented
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with the pink dotted-dashed line in Figure 3.15, while the blue solid line represents
theoretical calculations for the determination of the reaction mechanism, performed by Dr
N.G. Nicolis [43,57]. In Figure 3.16 different fits to the data depending on 4, 5 and 7 terms in
the sum of Legendre polynomials are represented for probing uncertainties due to the fit. The
different fits give approximately the same reaction cross section with deviations no more than
2%, as it can be seen in Table 3.11, where the coefficients of the Legendre polynomials are
indicated. The shape of the fit with 7 terms differs from the shapes of the fit with 4 terms and
with 5 terms, at the forward and at the background angles, but it cannot be verified as data
exist from 6.m=40° to 140°. Subsequently, an uncertainty band is formed for the angular
distribution due to the statistical errors of the differential cross sections indicating an upper
limit to the obtained uncertainty of the reaction cross section. The angular distribution of the
reaction at 29 MeV, the best fit to the data and the uncertainty band are represented in Figure
3.17. The uncertainty band corresponds to a 10% error for the reaction cross section.
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FIG. 3.15: Angular distribution data for the reaction °Li + p — *He + “He at bombarding energy 29 MeV (4.8
MeV/u) are compared with previous data [27] ,and with theoretical calculations performed by Dr N. G. Nicolis
[43,57]. The vertical error is due to a statistical error which is less than 1% and mainly due to an error 7% of the
solid angle, 5% of the intensity of the beam and 5% of the thickness of the target. The horizontal error due to the
angular uncertainty is approximately +3° and is included in the size of the data points.
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FIG. 3.16: Angular distribution data for the reaction °Li + p — *He + “He at bombarding energy 29 MeV. The
light blue dotted-dashed line represents the fourth order Legendre polynomial fit to the data, the pink dotted-
dashed line represents the fifth order Legendre polynomial fit to the data, while the red dotted-dashed line
represents the seventh order Legendre polynomial fit.

TABLE 3.10: Results of overlap angles in the center of mass frame at bombarding energy 29 MeV.

d(j b
(52) (%)

Oc *He “He
89.10 6.41 6.88
96.51 6.08 6.41
103.05 5.96 6.65
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FIG. 3.17: Angular distribution data for the reaction °Li+p — *He + “He at bombarding energy 29 MeV. The
blue solid line represents the best fit to the data (fourth order Legendre polynomial fit), while the red and the
green dotted-dashed lines define the uncertainty band for a 10% error to the reaction cross section -B, term of
the Legendre polynomials.

TABLE 3.11: Values of coefficients B in the expansion of the differential cross section in the center of mass

frame into a series of Legendre polynomials qo/q0 = iBlPl (cose)at bombarding energy 29 MeV.
1=0

Bo B1 B2 B3 B4 B5 B6 | o,=4nBo (mb)
4terms | 7.6963 | 2.6744 | 1.8776 | -1.4328 97
5terms | 7.4934 | 2.4400 | 1.1435 | -1.6879 | -0.5687 94
7 terms | 7.5795 | 0.7995 | 1.6654 | -4.0108 | 0.2813 | -1.3325 | 0.8094 95

The reaction cross section is calculated according to the equation (3.3), where By is the zero
order coefficient from Legendre polynomials to which the data are fitted. The reaction cross
section for the bombarding energy of 29 MeV is obtained by taking the mean value of the
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reaction cross sections coming from the fits with 4 terms, 5 terms and 7 terms, while the
standard deviation of the mean value is calculated according to the equation (3.4).

Therefore, the mean value of the reaction cross section, at bombarding energy 29 MeV, is 95
mb and the standard deviation of the mean value is 2 mb. This error is modified quadratically
due to the statistical uncertainty (upper limit of 10%) of the measured differential cross
sections.

3.2 Cross section of the reaction °Li + p - *He + *He

The differential cross sections, as it was described in chapters 3.1.1-3.1.4, are fitted to a sum
of Legendre polynomials /40 = Zl:BlPl (cose) and the reaction cross sections are

deduced as o =4nB, . Different fits, depending on 4, 5 and 7 terms of Legendre polynomials,

are performed for probing uncertainties due to the fit, and a reaction cross section is obtained
for each fit. The final reaction cross section, is calculated as a mean of the values deduced
during the various fits. The reaction cross sections and the standard deviations of the mean
values are indicated in Table 3.12. It should be noted that the final associate uncertainty to the
cross section will be deduced if we add in quadrature to the mean deviation the error due to
the measurement uncertainty. An upper limit to this uncertainty was estimated to be 10%.
Furthermore, the reaction cross sections as a function of energy between 2 to 5 MeV/u are
displayed in Figure 3.18, and are compared with some sets of previous measurements [18-20,
23,24,27]. The present results clarify previous inconsistencies and combined with the Lin et
al. data they possibly probe a broad new resonance at E,=3.7 MeV. Except of the present
reaction cross sections, the absorption cross sections ccpcc calculated by Prof. K. Rusek, and
the cross sections for a compound production of *He and “He with the MECO code Gmeco
calculated by Dr. N. Nicolis, are presented in Table 3.12. It was found that the measured
values exhaust most of the absorption cross section, indicating that the °Li + p — *He + *He
reaction is the most prominent reaction in this energy range and it proceeds mostly via a
compound mechanism.
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TABLE 3.12: The mean value of the reaction cross sections and the standard deviations of the mean value , as
well as the calculation for a compound production of *He and “He with the MECO code, o weco and the
absorption cross section (o - 6 preak) Via @ CDCC calculation, 6 cpcc ,for bombarding energies 16 MeV, 20

MeV, 25 MeV and 29 MeV. The Q value of the reaction is Q=4.02 MeV.

Eia (MeV) Ecm(MeV) E,(MeV) o (mb) & meco (Mb) 6 cocc (Mb)
16 2.30 2.67 1112 114 131
20 2.87 3.33 140+8 145 162
25 3.59 417 131+6 114 133
29 4,16 4.83 95+2 90 110
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FIG. 3.18: Present reaction cross section measurements as a function of energy are designated with the boxes.
Our values are compared with previous data from Refs. [18-20,23,24,27]. The data from the references [24,25]
are not original experimental data, but evaluated ones.

[74]



3.3 Theoretical calculations

For the theoretical interpretation of the results, calculations in a Continuum Discretized
Coupled Channel calculation framework (CDCC) were performed by Prof K. Rusek, Coupled
Reaction Channel (CRC) were performed by Dr N. Keeley and compound calculations with
the code MECO by Dr N. Nicolis. Some aspects of the calculations are given briefly below,
pertinent in this work.

The absorption cross sections were determined previously and presented in Refs. [30,57].
That is the experimental data from the elastic scattering °Li + p — °Li + p, were reproduced
in a Continuum Discretized Coupled Channel calculation framework (CDCC) performed by
Prof K. Rusek. In this respect, the total cross sections and the breakup cross sections were
determined. The absorption cross sections were extracted as the differences between total
reaction cross sections and breakup cross sections. The results are presented in table 3.12 and
are compared with our experimental values and it is obvious that the presently measured
reaction cross section exhaust most of the absorption cross section, indicating that the most
prominent reaction in this energy range, is the one under study.

Further, Dr. N. Keeley carried out Coupled Reaction Channels (CRC) calculations for the
®Li(p,®He)*He reaction using the code FRESCO. The shape of these theoretical calculations is
qualitatively similar to the shape of the angular distributions at the forward angles. They
explain the broad peak which is centered at approximately 6.,=50 degrees and becomes
more pronounced as the energy beam increases, indicating that there is a small contribution
from direct mechanism. However, no quantitative results were obtained as it was found that
the results were very sensitive to details of the input to the calculations, particularly the exit
channel ®He + “He optical potential, which seems to be poorly known.

The compound nucleus decay was calculated with the equilibrium statistical model of nuclear
reactions. For that purpose, the statistical model Monte-Carlo code MECO (Multisequential
Evaporation COde) was employed by Dr N. G. Nicolis[43]. Angular distributions of the
emitted particles were calculated using orbital angular momentum values from the
transmission coefficient array, responsible for the decay under consideration and they were in
a good agreement with the present results at the backward angles. This indicates the strong
presence of the compound mechanism. In the same context reaction cross sections were
extracted [43,57] and they are compared with the present reaction cross section in table 3.12.
It was found that the °Li + p — *He + ®He reaction, which is the most prominent reaction in
this energy range, proceeds mostly via a compound mechanism and the excellent agreement
between the compound model calculations and the present data sets at the backward angles,
support the inter consistency of all data recorded and analyzed in this experiment.
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4. Summary and Conclusions

Angular distribution measurements were performed for the reaction °Li + p — *He + *He at
energies 2.7, 3.3, 4.2 and 4.8 MeV/u at the Instituto Nazionali di Fisica Nucleare- Laboratori
Nazionali del Sud in Catania (INFN-LNS), Italy. The *He and *He were both observed and
they were well resolved via the AE-E technique, covering a wide angular range from 6., ~
40° to 140°. In this respect differential cross sections were deduced at the above energies and
were compared both with previous measurements and theoretical calculations. At higher
energies the present data agreed well with previous measurements, while inconsistencies
presented amongst previous data sets at 16 MeV, were partly clarified with the present
results.

The comparison of experimental data and theory gave ground to useful conclusions for the
reaction mechanism. At the backward angles the excellent agreement with theoretical
calculations made by Dr. N. Nicolis with the code MECO, indicates the strong presence of
the compound mechanism and precludes the validity of the Elwyn et al. [20] both in shape
and intensity. However, comparing the theoretical predictions and the experimental data it is
apparent a broad peak centered at approximately 6.m =50 degrees in disagreement with our
compound calculations, which becomes more pronounced as the bombarding energy
increases. This indicates an additional small contribution from direct mechanisms in addition
to the compound one. The shape of the angular distribution at the forward angles was
qualitatively similar to theoretical calculations made by Dr. N. Keeley with the code
FRESCO in a coupled reaction channels (CRC) framework. However no quantitative results
were obtained as it was found that the results were very sensitive to details of the input to the
calculations, particularly the exit channel *He + “He optical potential, which seems to be
poorly known.

The differential cross sections were finally fitted to a sum of Legendre
polynomials Zl:Blpl (cos(e)) and the cross sections of the reaction were estimated according

to the formula (o = 4nB,, where By is the zero order Legendre coefficient). The present cross

sections of the reaction were compared with some sets of previous excitation function
measurements and they disclosed previous inconsistencies favoring the Lin et al. [18] results.

We should mention in that point, that in an excellent description of the elastic scattering
channel of the reaction °Li+p in a Continuum Discretized Coupled Channel Calculation
framework (CDCC) -calculations were performed by Prof. K. Rusek- absorption cross
sections ocpcc Were also extracted as the difference between the total cross section and the
breakup cross section. These results were compared with our experimental values and it was
found that the studied reaction exhausts almost all the absorption cross section indicating
that the most prominent reaction in this energy range is the reaction °Li + p — ‘He + *He.
Further, the excellent agreement of the compound model calculations with the data at
backward angles, which take into account the above absorption cross sections extracted from

the ®Li + p elastic scattering channel support the inter consistency of all data recorded in the
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LIPMAGNEX experiment which included measurements for elastic scattering and breakup
with the MAGNEX Spectrometer and reaction measurements with the DINEX telescope.

Finally we should refer to the observation of a possible new resonance centered at E,= 3.7
MeV.
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Appendix

A. Error calculation of solid angle Q.

The solid angle is given according to the formula:

B N
d*D*o

Ruth.

Q

where:

N are the number of counts, @ is the flux of the beam, D are the scattering centers of gold, and
Opuen. 1S the Rutherford cross section.

So the error of the solid angle is given by the relation:
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However, the statistical error, the error in the estimation of the thickness of the target and the error in
the flux of the beam are:

0N=~ﬁ3,ob=O.O5*D,o®=O.05*®

Therefore,
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B. Calculation of Coulomb barrier

The Coulomb barrier is calculated via the Broglia program [61] written in C language:
#include<stdio.h=

#include<math.h=

double z1,z2,al,az2,ri1,r2,rf,rlab,cvilab,cvicm,cv2lab,cv2em,ro;

int main(void){

printf("give the z1,z2,a1,a2,ro\n",z1,z2,al1,a2,ro);
scanf("%1lf %1f %1f %1f %1f",&z1,&z2,%a1,&az2,&ro);

ri=ro*{pow(al,0.333)+pow(az2,0.333));
r2=1.07*(pow(al,0.333)+pow(a2,0.333))+2.72;

rlab=(al+a2)/az ;
rf=1-0.63fr2;

cvilab=1.44*z1*z2*rlab/r1;
cvlcm=1.44*z1*z2/r1;

cv2lab=rf*1.44*z1*z2*rlab/r2;
cv2em=rf*1.44%z1*%z2/r2;

printf(" coulomb barrier at lab: %1f \n",cvilab);

printf(" coulomb barrier at cm: %1f \n",cvicm);

printf("coulomb barrier according to Broglia at lab:%1f \n",cv2lab);
printf("coulomb barrier according to Broglia at cm:%1f \n",cvzcm);

return O;

}
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C. Transformation of the differential cross section from the laboratory
system into the center of mass system.

The differential cross section is transformed from the laboratory system into the c.m. system,
via the below code written in C language, which is based in references [62-63]. For the
reaction product ®He, the angles in the centre of mass system are obtained via the 6., =180 +
¢, Where ¢ is the transformed angle in the c.m., presented by the code. For the reaction
product “He, the angles in the c.m. system are obtained via the 6.m=-¢, where ¢ is the
transformed angle in the c.m. presented by the code.

#include<stdio.h>
#include<math.h>

fidefine PI 3.14159265

int main(vold){

int 1,3;

double thetalab[16],thetacmi[16],thetalabrad[16],a[16],tetragono[16],riza[16],piliko[16],thetacmirad[16],s1ab[16],5cm[16];
double sinthetalabrad[16],costhetalabrad[16],m1,m2,m3,m4,Q,Elab,Elcm,q,arithmitis[16],paronomastis[16];

FILE *fp;

fp=fopen("data.txt","r");

for(1=0;1<16;14+4)(

fscanf(fp, "%1f %1f",&thetalab[i],&s1ab[1]);
}

fclose(fp);

printf("give m1,m2,m3,m4,0,Elab \n");
scanf("%Lf %Lf %1f %1f %1 %17", &ml,&m2,&m3,&n4,&Q,&E1ab);

Eicm=(m2/(m1+m2))*Elab;

g=sqrt((mi*m3*(m3+nd)*Eicn)[(m2*md*(m1+n2)*(Eicm+Q)));

FILE *out;
out=fopen("dataout. txt","w");

fprintf(out,"thetalab thetacm crosssection(lab) crosssection(cm) \n");
for(j=0;j<16;j++){
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thetalabrad[j]=(PI*thetalab[j])/180;

a[j]=tan(thetalabrad[j]);

tetragono[j]=pow(a[j],2);
riza[j]=sqrt(4+4*tetragono[j]*(1-pow(qg,2)));
piliko[j]=(-2*g*tetragono[j]+riza[j])/(2*(tetragono[j]+1));

thetacmirad[j]=acos(piliko[i]);
thetacmi[j]=thetacmirad[j]*188/PI;

.
Ll

sinthetalabrad[j]=sin(thetalabrad[j]
costhetalabrad[j]=cos(thetalabrad[j]

T N

.
L]

arithmitis[j]=sqrt(1-(pow(g,2)*pow(sinthetalabrad[j],2)));
paronomastis[j]=pow((g*costhetalabrad[j]+arithmitis[j]),2);
scm[j]=(arithmitis[j]*slab[j])/paronomastis[j];

fprintf(out,"%.2f %.2f %.2f %.2f \n",thetalab[j],3.14-thetacmi[j],slab[j],sem[j]);
}

fclose(out);

return 0;

}
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D. TABLES

Table T.3.1.a: Data for calculation of differential cross section at bombarding energy 16 MeV

0 (" 0. (° N error N 0 error d—olab(mbsr) @cm(mbsr) A(d—ccm(mb )) error

() | OenC) | counts) | (counts) (sr) Q(sr) | 49 dQ dQ St %
*He | 16.38 | 44.95 8612 93 0.00145 | 0.00010 66.33 9.28 0.93 10.02
*He | 17.54 | 48.25 10138 101 0.00169 | 0.00012 66.84 9.36 0.94 10.04
*He | 18.70 | 51.65 10584 103 0.00176 | 0.00012 66.96 9.39 0.94 10.01
*He | 19.86 | 55.05 11607 108 0.00181 | 0.00013 71.46 10.03 1.01 10.07
*He | 21.02 | 58.45 11460 107 0.00185 | 0.00013 69.16 9.71 0.98 10.09
*He | 22.18 | 61.95 11410 107 0.00186 | 0.00013 68.32 9.59 0.96 10.01
*He | 23.34 | 65.55 10946 105 0.00193 | 0.00014 63.19 8.86 0.89 10.05
*He | 24.50 | 69.15 10804 104 0.00196 | 0.00014 61.44 8.59 0.86 10.01
*He | 25.66 | 72.95 11893 109 0.00197 | 0.00014 67.44 9.39 0.94 10.01
*He | 26.82 | 76.75 11606 108 0.00199 | 0.00014 64.96 8.98 0.90 10.02
*He | 27.98 | 80.75 11948 109 0.00202 | 0.00014 66.14 9.05 0.91 10.06
*He | 29.14 | 84.85 11156 106 0.00202 | 0.00014 61.54 8.29 0.84 10.13
*He | 30.30 | 89.15 10458 102 0.00208 | 0.00015 56.24 7.41 0.75 10.12
*He | 31.46 | 93.75 11236 106 0.00207 | 0.00015 60.49 7.69 0.78 10.14
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Table T.3.1.b: Data for calculation of differential cross section at bombarding energy 16 MeV

01us(*) | Our(”) N error N Q(sr) error @lab(m%r d—Ocm(mbsr) A(@cm(mbsr)j error

lab om (counts) | (counts) Q@) | dQ dQ dQ %
*He | 33.78 | 101.3 4435 67 0.00149 | 0.00011 33.26 7.50 0.76 10.13
*He | 32.62 | 104.1 5904 77 0.00206 | 0.00015 31.98 7.14 0.72 10.08
*He | 31.46 | 107.0 6309 79 0.00207 | 0.00015 33.97 7.51 0.76 10.12
*He | 30.30 | 109.8 6265 79 0.00208 | 0.00015 33.69 7.38 0.75 10.16
*He | 29.14 | 1126 6353 80 0.00202 | 0.00014 35.05 7.61 0.77 10.12
*He | 27.98 | 115.4 6309 79 0.00202 | 0.00014 34.93 7.51 0.76 10.12
*He | 26.82 | 118.2 6692 82 0.00199 | 0.00014 37.45 7.98 0.81 10.15
*He | 25.66 | 121.0 6605 81 0.00197 | 0.00014 37.46 7.92 0.80 10.10
*He | 24.50 | 123.7 6441 80 0.00196 | 0.00014 36.63 7.68 0.78 10.15
*He | 23.34 | 1265 6394 80 0.00193 | 0.00014 36.91 7.68 0.77 10.03
*He | 22.18 | 129.2 6854 83 0.00186 | 0.00013 41.04 8.47 0.85 10.04
*He | 21.02 | 131.9 6990 84 0.00185 | 0.00013 42.18 8.65 0.87 10.06
*He | 19.86 | 134.6 7021 84 0.00181 | 0.00013 43.23 8.80 0.89 10.11
*He | 18.70 | 137.3 7325 86 0.00176 | 0.00013 46.34 9.38 0.95 10.13
*He | 17.54 | 140.0 7131 84 0.00169 0.00012 47.02 9.46 0.95 10.04
*He | 16.38 | 142.7 6696 82 0.00145 | 0.00010 51.58 10.32 1.04 10.08
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Table T.3.2.a: Data for calculation of differential cross section at bombarding energy 20 MeV

0s(*) | Oun(®) N er,:lor o error %lab(mb/r %cm(mb r) A[d—ocm(mb )j error
leb em (counts) s) Q(sr) | dQ SL) dQ s dQ St %
(counts)

“He | 17.54 | 50.75 213966 463 0.00169 | 0.00012 98.95 12.55 1.26 10.04
“He | 18.70 | 54.35 226407 476 0.00176 | 0.00012 100.48 12.73 1.27 9.98
“He | 19.86 | 57.95 | 218353 467 0.00181 | 0.00013 94.30 11.92 1.19 9.98
*He | 21.02 | 61.65 | 235804 486 0.00185 | 0.00013 99.82 12.58 1.26 10.2
“He | 22.18 | 65.45 215325 464 0.00186 | 0.00013 90.44 11.34 1.14 9.98
"He | 23.34 | 69.35 | 210666 459 0.00193 | 0.00014 85.30 10.62 1.06 9.98
“He | 2450 | 73.35 211927 460 0.00196 | 0.00014 84.54 10.42 1.04 9.98
“He | 25.66 | 77.45 221505 471 0.00197 | 0.00014 88.11 10.71 1.07 9.99
"He | 26.82 | 81.85 | 246064 496 0.00199 | 0.00014 96.61 11.51 1.15 9.99
"He | 27.98 | 86.35 | 253575 504 0.00202 | 0.00014 98.47 11.39 1.14 10.01
“He | 29.14 | 91.25 | 239099 489 0.00202 | 0.00014 92.52 10.25 1.03 10.05
“He | 30.30 | 96.65 | 259460 509 0.00208 | 0.00015 97.87 10.12 1.02 10.08
“He | 31.46 | 102.85 | 267098 517 0.00207 | 0.00015 100.87 9.22 0.93 10.09
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Table T.3.2.b: Data for calculation of differential cross section at bombarding energy 20 MeV

0us(*) | Oun®) N erlilor Q(sr) error %lab(m%r j—;cm(mb sr) A(% cm(mbsr)) error
(counts) (counts) Q(sr) %

*He | 33.78 | 97.05 86620 294 0.00149 | 0.00011 45.57 9.27 0.93 10.03
*He | 32.62 | 100.15 | 118100 344 0.00206 | 0.00015 4487 9.07 0.91 10.03
*He | 31.46 | 103.25 | 119000 345 0.00207 | 0.00015 44.94 9.02 0.91 10.09
®He | 30.30 | 106.35 | 118800 345 0.00208 | 0.00015 4481 8.94 0.90 10.07
*He | 29.14 | 109.35 | 118900 345 0.00202 | 0.00014 46.01 9.11 0.91 9.99
*He | 27.98 | 112.35 | 118100 343 0.00202 | 0.00014 45.86 9.01 0.90 9.99
*He | 26.82 | 115.25 | 118900 345 0.00199 | 0.00014 46.68 9.11 0.91 9.99
®He | 25.66 | 118.25 | 117900 343 0.00197 | 0.00014 46.90 9.09 0.91 10.01
*He | 24.50 | 121.15 | 118900 345 0.00196 | 0.00014 47.43 9.13 0.91 9.97
*He | 23.34 | 124.05 | 120600 347 0.00193 | 0.00014 48.83 9.34 0.94 10.06
*He | 22.18 | 126.85 | 125400 354 0.00186 | 0.00013 52.67 10.00 1.00 10.00
*He | 21.02 | 129.75 | 124500 353 0.00185 | 0.00013 52.70 9.95 1.00 10.05
*He | 19.86 | 132.55 | 128100 358 0.00181 | 0.00013 55.32 10.38 1.04 10.02
®He | 18.70 | 135.35 | 130800 362 0.00176 | 0.00013 58.05 10.83 1.08 9.97
®He | 17.54 | 138.25 | 131400 362 0.00169 | 0.00012 60.77 11.28 1.13 10.02
*He | 16.38 | 141.05 | 118500 344 0.00145 | 0.00010 64.02 11.82 1.18 9.98
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Table T.3.3.a: Data for calculation of differential cross section at bombarding energy 25 MeV

do
. . N error error —lab(mb ) do do  (mb error
B1ab(") | Oem() (counts) (COl’:Ints) Qsr) Q(sr) do Sr @Cm(mbsr) A d—Qcm( sr) %
*He 16.38 | 49.55 61500 248 0.00145 | 0.00010 103.10 11.93 1.19 9.97
*He 18.70 | 57.15 80825 284 0.00176 | 0.00012 111.30 12.78 1.28 10.02
*He | 19.86 | 61.05 | 82910 288 0.00181 | 0.00013 111.11 12.67 1.27 10.02
*He | 21.02 | 65.05 | 79960 283 0.00185 | 0.00013 105.03 11.88 1.19 10.02
"He | 22.18 | 69.25 | 88547 299 0.00186 | 0.00013 115.40 12.91 1.29 9.99
"He | 23.34 | 73.45 | 82447 287 0.00193 | 0.00014 103.59 11.41 1.14 9.99
*He | 24.50 | 77.95 | 90980 302 0.00196 | 0.00014 112.61 12.13 1.22 10.06
"He | 25.66 | 82.65 | 95300 309 | 0.00197 | 0.00014 117.63 12.29 1.23 10.01
*He | 26.82 | 87.75 | 96080 310 0.00199 | 0.00014 117.05 11.70 1.17 10.00
*He | 27.98 | 93.35 | 93500 306 0.00202 | 0.00014 112.66 10.50 1.05 10.00
*He | 29.14 | 99.75 | 87630 296 0.00202 | 0.00014 105.22 8.68 0.87 10.02
Table T.3.3.b: Data for calculation of differential cross section at bombarding energy 25 MeV
error do. . (mb ) do
B1an(*) | Ocm() (coDInts) N Q(sr) g(ror; 40 lab( ST @cm(mb ) A(—cm(mbsr)) E[;or
(counts) s dQ St dQ 0
*He | 33.78 | 92.35 | 29430 172 0.00149 | 0.00011 48.04 8.73 0.88 10.08
*He | 32.62 | 95.85 | 41420 204 0.00206 | 0.00015 48.84 8.88 0.89 10.02
*He | 31.46 | 99.25 | 41290 203 0.00207 | 0.00015 48.39 8.79 0.88 10.01
*He | 30.30 | 102.6 | 40240 201 0.00208 | 0.00015 47.10 8.53 0.86 10.08
*He | 29.14 | 105.9 | 37910 195 0.00202 | 0.00014 45.52 8.21 0.82 9.99
*He | 27.98 | 109.1 | 38800 197 0.00202 | 0.00014 46.75 8.40 0.84 10.00
*He | 26.82 | 112.3 | 38580 196 0.00199 | 0.00014 47.00 8.41 0.84 9.99
*He | 25.66 | 115.4 | 38220 195 0.00197 | 0.00014 47.17 8.40 0.84 10.00
*He | 2450 | 118.5 | 38140 195 0.00196 | 0.00014 47.21 8.36 0.84 10.05
*He | 23.34 | 121.6 | 35520 189 0.00193 | 0.00014 44.63 7.86 0.79 10.05
*He | 22.18 | 124.6 | 38290 196 0.00186 | 0.00013 49.90 8.74 0.88 10.07
*He | 21.02 | 127.6 | 38700 197 0.00185 | 0.00013 50.83 8.86 0.89 10.05
*He | 19.86 | 130.6 | 37560 194 0.00181 | 0.00013 50.33 8.73 0.88 10.08
*He | 18.70 | 133.6 | 37550 194 0.00176 | 0.00013 51.71 8.93 0.89 9.97
*He | 17.54 | 136.5 | 38290 196 0.00169 | 0.00012 54.95 9.44 0.95 10.06
*He | 16.38 | 139.5 | 33090 182 0.00145 | 0.0001 55.48 9.49 0.95 10.01
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Table T.3.4.a: Data for calculation of differential cross section at bombarding energy 29 MeV

do

. . N Error error —lab(mb ) do do Error

0C) | 90 | (o | neoumey | 20 | Gy | a0\ /25| Sen("L) A[d_Qcm(mbsr)j %
*He | 16.38 | 50.95 115270 340 0.00145 | 0.00010 89.66 9.79 0.98 10.01
*He | 17.54 | 54.85 135687 368 0.00169 | 0.00012 90.34 9.82 0.98 9.98
*He | 18.70 | 58.85 139868 374 0.00176 | 0.00012 89.36 9.64 0.97 10.06
*He | 19.86 | 62.95 137777 371 0.00181 | 0.00013 85.66 9.16 0.92 10.04
*He | 21.02 | 67.15 141688 376 0.00185 | 0.00013 86.35 9.11 0.91 9.99
*He | 22.18 | 71.55 140120 374 0.00186 | 0.00013 84.73 8.79 0.88 10.01
*He | 23.34 | 76.15 132735 364 0.00193 | 0.00014 77.38 7.85 0.79 10.06
*He | 24.50 | 81.05 132413 364 0.00196 | 0.00014 76.04 7.46 0.75 10.05
*He | 25.66 | 86.25 156814 396 0.00197 | 0.00014 89.80 8.40 0.84 10.00
*He | 26.82 | 91.95 108897 330 0.00199 | 0.00014 61.55 5.35 0.54 10.09
*He | 27.98 | 98.65 186901 432 0.00202 | 0.00014 104.49 7.98 0.80 10.02
*He | 29.14 | 107.45 | 154512 393 0.00202 | 0.00014 86.08 4.83 0.48 9.94
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Table T.3.4.b: Data for calculation of differential cross section at bombarding energy 29 MeV

do
. . N error error —lab(mb ) do do Error
Oa() | Oem() | counts) | N(counts) | D | qery | A2 S e (mb s r) b [d_Q Cm(mb s r)j %

*He | 33.78 | 89.10 50390 224 0.00149 | 0.00011 38.17 6.41 0.65 10.14
He | 32.62 | 92.87 67980 261 0.00206 | 0.00015 37.19 6.29 0.63 10.02
*He | 31.46 | 96.51 65890 257 0.00207 | 0.00015 35.82 6.08 0.61 10.03
*He | 30.30 | 100.05 | 64140 253 0.00208 | 0.00015 34.83 5.92 0.59 9.97
*He | 29.14 | 103.51 | 62930 251 0.00202 | 0.00014 35.06 5.96 0.60 10.07
*He | 27.98 | 106.89 | 61000 247 0.00202 | 0.00014 34.10 5.78 0.58 10.03
*He | 26.82 | 110.22 59840 245 0.00199 | 0.00014 33.82 5.72 0.57 9.97
*He | 25.66 | 113.49 58740 242 0.00197 | 0.00014 33.64 5.67 0.57 10.05
*He | 24.50 | 116.72 | 53920 232 0.00196 | 0.00014 30.97 5.20 0.52 10.00
*He | 23.34 | 119.90 | 55790 236 0.00193 | 0.00014 32.52 5.44 0.55 10.11
®He | 22.18 | 123.05 | 55780 236 0.00186 | 0.00013 33.73 5.62 0.56 9.96
*He | 21.02 | 126.17 | 55470 236 0.00185 | 0.00013 33.81 5.61 0.56 9.98
*He | 19.86 | 129.27 | 54290 233 0.00181 | 0.00013 33.75 5.58 0.56 10.04
®He | 18.70 | 132.33 | 55810 236 0.00176 | 0.00013 35.66 5.87 0.59 10.05
®He | 17.54 | 135.38 | 55270 235 0.00169 | 0.00012 36.80 6.03 0.60 9.95
He | 16.38 | 138.41 | 49540 223 0.00145 | 0.0001 38.53 6.29 0.63 10.02
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Table T.3.5 Predicted energies (energy loss on AE detector and the remaining energy on E detector) for bombarding energy 16 MeV.

Escattered (MEV) Eloss (MEV) Eremain(MeV)

1st sol. of: 2nd sol. of: 1st sol. of: 2nd sol. of: 1st sol. of: 2nd sol. of:

strip | 0(*) | *He | “He | *He | “He *He *He | °He | “He *He *He | °He | “He

1 16.38 | 16.64 | 16.89 | 0.30 | 1.51 | 2.6560 | 3.2826 0 1.1468 | 13.931 | 13.541
2 17.54 | 16.38 | 16.51 | 0.30 | 1.54 | 2.6949 | 3.3473 0 1.1784 | 13.631 | 13.095
3 18.70 | 16.09 | 16.09 | 0.31 | 1.58 | 2.7362 | 3.4253 0 1.2212 | 13.299 | 12.595
4 19.86 | 15.79 | 1566 | 0.31 | 1.63 | 2.7810 | 3.5170 0 1.2750 | 12.953 | 12.072
5 21.02 | 1548 | 1520 | 0.32 | 1.68 | 2.8301 | 3.6107 0 1.3284 | 12.592 | 11.516
6 2218 | 1515 | 1472 | 0.33 | 1.73 | 2.8854 | 3.7179 0 1.3815 | 12.205 | 10.926
7 2334 | 1481 | 1421 | 0.33 | 1.79 | 2.9446 | 3.8432 0 1.4457 | 11.805 | 10.287
8 2450 | 14.45 | 13.68 | 0.34 | 1.87 | 3.0102 | 3.9886 0 1.5318 | 11.377 | 9.610
9 25.66 | 14.08 | 13.10 | 0.35| 1.95 | 3.0803 | 4.1617 0 1.6172 | 10.932 | 8.853
10 | 26.82 | 13.70 | 1252 | 0.36 | 2.04 | 3.1613 | 4.3517 | 0.01 | 1.7134 | 10.472 | 8.078
11 | 2798 | 13.30 | 11.90 | 0.37 | 2.14 | 3.2484 | 45834 | 0.01 | 1.8195 | 9.983 7.224
12 | 29.14 | 12.89 | 11.25 | 0.38 | 2.27 | 3.3479 | 48720 | 0.01 | 1.9581 | 9.470 6.278
13 | 30.30 | 12.47 | 10.56 | 0.39 | 2.41 | 3.4565 | 5.2358 | 0.01 | 2.1076 | 8.939 | 5.218
14 | 31.46 | 12.05| 9.83 | 041 | 259 | 35707 | 5.7305 | 0.01 | 2.2978 | 8.403 | 3.987
15 | 3262 | 1161 | 9.04 | 042 | 282 | 3.7108 | 6.4941 | 0.02 | 2.5414 | 7.819 2.424

16 | 33.78 | 11.17 | 8.17 | 0.44 | 3.12 | 3.8604 | 7.9947 | 0.02 | 2.8556 | 7.225 | 0.040
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Table T.3.6 Predicted energies (energy loss on AE detector and the remaining energy on E detector) for bombarding energy 20 MeV.

Escattered (MEV) Eloss (MEV) Eremain(MeV)

1st sol. of: 2nd sol. of: 1st sol. of: 2nd sol. of: 1st sol. of: 2nd sol. of:

strip | O(?) | *He | “He | *He | “He | °He *He | °He | “He *He *He | °He | *He

1 16.38 | 19.43 | 19.83 | 0.57 | 2.29 | 2.3308 | 2.8614 0 1.8316 | 17.025 | 16.877
2 1754 | 19.10 | 19.33 | 0.58 | 2.35 | 2.3660 | 2.9277 0 1.8972 | 16.658 | 16.308
3 18.70 | 18.73 | 18.80 | 0.59 | 2.41 | 2.4041 | 2.9965 0 1.9623 | 16.248 | 15.706
4 19.86 | 18.35 | 18.24 | 0.61 | 2.49 | 2.4455 | 3.0726 | 0.01 | 2.0488 | 15.825 | 15.066
5 21.02 | 17.96 | 17.65 | 0.62 | 2.57 | 2.4921 | 3.1670 | 0.01 | 2.1351 | 15.387 | 14.380
6 2218 | 17.54 | 17.02 | 0.64 | 2.67 | 2.5438 | 3.2685 | 0.02 | 2.2433 | 14.912 | 13.643
7 2334 | 17.11 | 16.35 | 0.65 | 2.77 | 2.5974 | 3.3844 | 0.02 | 2.3507 | 14.426 | 12.853
8 2450 | 16.66 | 15.64 | 0.67 | 2.90 | 2.6584 | 3.5311 | 0.02 | 2.4903 | 13.913 | 11.992
9 25.66 | 16.19 | 1491 | 0.69 | 3.04 | 2.7272 | 3.6851 | 0.03 | 2.6400 | 13.371 | 11.101
10 | 26.82 | 15.70 | 14.10 | 0.71 | 3.21 | 2.8009 | 3.8855 | 0.04 | 2.8120 | 12.804 | 10.084
11 | 27.98 | 15.20 | 13.27 | 0.73 | 3.42 | 2.8836 | 4.1266 | 0.04 | 3.0442 | 12.217 | 9.006
12 | 29.14 | 1468 | 12.36 | 0.76 | 3.67 | 2.9751 | 4.4270 | 0.06 | 3.3085 | 11.602 | 7.784
13 | 30.30 | 14.15 | 11.36 | 0.79 | 3.99 | 3.0775 | 4.8479 | 0.07 | 3.6452 | 10.965 | 6.353
14 | 31.46 | 1359 | 10.23 | 0.82 | 4.43 | 3.1931 | 5.4836 | 0.09 | 4.1038 | 10.286 | 4.570
15 | 32.62 | 13.03 | 8.81 | 0.86 | 5.14 | 3.3244 | 6.9119 | 0.11 | 4.8459 | 9.588 1.700

16 | 33.78 | 12.46 0.90 3.4712 0.14 8.865
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Table T.3.7 Predicted energies (energy loss on AE detector and the remaining energy on E detector) for bombarding energy 25 MeV.

Escattered (MEV) Eloss (MEV) Eremain(MeV)
1st sol. of: 2nd sol. of: 1st sol. of: 2nd sol. of: 1st sol. of: 2nd sol. of:
strip | Ows(®) | °He | “He | °He | “He | *He *He *He | “He *He *He *He | *He

1 16.38 | 23.03 | 23.60 | 1.01 | 3.39 | 2.0219 | 2.4703 | 0.70 3.22 20.976 21.090
2 1754 | 2259 | 2297 | 1.03 | 3.48 | 2.0532 | 2.5275 | 0.72 3.31 20.504 20.402
3 18.70 | 22.14 | 22.26 | 1.05 | 3.60 | 2.0885 | 2.5919 | 0.74 3.44 | 20.018 19.626
4 19.86 | 21.65 | 21.53 | 1.07 | 3.72 | 2.1274 | 2.6660 | 0.76 3.56 19.488 18.820
5 21.02 | 21.14 | 20.75 | 1.10 | 3.86 | 2.1683 | 2.7516 | 0.79 3.70 18.936 17.953
6 2218 | 20.61 | 19.92 | 1.12 | 4.02 | 2.2162 | 2.8440 | 0.82 3.86 18.357 17.029
7 2334 | 20.05 | 19.02 | 1.16 | 4.21 | 2.2666 | 2.9636 | 0.86 4.06 17.746 16.007
8 2450 | 19.47 | 18.06 | 1.19 | 443 | 2.3229 | 3.0918 | 0.89 4.28 17.108 14.916
9 25.66 | 18.86 | 17.04 | 1.23 | 469 | 2.3869 | 3.2571 | 0.93 4.55 16.433 13.728
10 26.82 | 18.23 | 1592 | 1.27 | 5.02 | 2.4548 | 3.4586 | 0.97 4.88 15.733 12.403
11 2798 | 1758 | 1470 | 1.32 | 5.45 | 2.5344 | 3.7196 1.03 5.32 15.002 10.917
12 29.14 | 16.90 | 13.30 | 1.37 | 6.02 | 2.6196 | 4.0965 1.08 5.90 14.235 9.1344

13 30.30 | 16.21 | 11.52 | 143 | 6.95 | 2.7181 | 4.7378 1.15 6.84 13.444 6.7042

14 | 31.46 | 15.48 1.50 2.8288 1.22 12.601
15 32.62 | 14.74 1.57 2.9555 1.30 11.732
16 33.78 | 13.99 1.66 3.0996 1.39 10.834
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Table T.3.8 Predicted energies (energy loss on AE detector and the remaining energy on E detector) for bombarding energy 29 MeV.
Escattered (MEV) Eloss (MEV) Eremain(MeV)

1st sol. of: 2nd sol. of: 1st sol. of: 2nd sol. of: 1st sol. of: 2nd sol. of:
strip | Op(") | *He | *He | *He | *He | °He *He *He “He *He ‘He | *He | “He
1 16.38 | 25.71 | 26.41 | 1.37 | 4.26 | 1.8481 | 2.2544 | 1.004 | 4.1136 | 23.833 | 24.119
2 1754 | 25.21 | 25.65 | 1.40 | 4.39 | 1.8782 | 2.3075 | 1.1432 | 4.2458 | 23.302 | 23.305
3 18.70 | 24.66 | 24.83 | 1.42 | 453 | 1.9127 | 2.3707 | 1.1637 | 4.3883 | 22.717 | 22.421
4 19.86 | 24.09 | 23.96 | 1.46 | 4.70 | 1.9483 | 2.4390 | 1.2062 | 4.5615 | 22.110 | 21.481
5 21.02 | 23.51 | 23.02 | 1.49 | 4.89 | 1.9883 | 2.5230 | 1.2376 | 4.7554 | 21.489 | 20.455
6 22.18 | 22.87 | 22.02 | 1.54 | 5.12 | 2.0330 | 2.6145 | 1.2908 | 4.9866 | 20.803 | 19.362
7 23.34 | 22.22 | 20.94 | 1.58 | 5.38 | 2.0822 | 2.7310 | 1.3325 | 5.2499 | 20.103 | 18.163
8 | 2450|2153 | 19.76 | 1.63 | 5.70 | 2.1368 | 2.8649 | 1.3851 | 5.5752 | 19.357 | 16.847
9 25.66 | 20.82 | 18.50 | 1.69 | 6.09 | 2.1971 | 3.0298 | 1.4484 | 5.9696 | 18.586 | 15.419
10 | 26.82 | 20.07 | 17.10 | 1.75 | 6.59 | 2.2649 | 3.2479 | 1.5115 | 6.4749 | 17.766 | 13.797

11 | 27.98 | 19.31 | 1547 | 1.82 | 7.28 | 2.3399 | 3.5531 | 1.5858 | 7.1714 | 16.930 | 11.856

12 | 29.14 | 18.50 | 13.38 | 1.90 | 8.42 | 2.4249 | 4.0724 | 1.6697 | 7.4347 | 16.033 | 9.2389 0.88
13 | 30.30 | 17.69 1.98 2.5213 1.7531 15.124
14 | 31.46 | 16.84 2.08 2.6278 1.8580 14.165
15 | 32.62 | 15.94 2.20 2.7573 1.9839 13.133
16 | 33.78 | 15.04 2.34 2.9041 2.1294 12.084
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E. Error calculation of differential cross section.

The differential cross section is given according to the formula:

do N
dQ Q*®*D,

where
N represents the number of counts
Q is the solid angle

Dnya.  are the scattering centers of hydrogen

) is the flux of the beam

So the error of the differential cross section is given by the relation:

do
Al — | = o o o +| ———=*C0
(de ON ! Q ? ol ¢ oD,

2 2 2 2
do 1 1 N 1 N 1 N
Al —|= —*ON + ——2* *OQ + ——2* *OQ + —2—* *OD =
) \laresn,, Q' oD, , o Q*D,, D2 Qo

(98]



However, the statistical error, the error in the estimation of the thickness of the target and the
error of the flux of the beam are:

o, =N, 0,=0.05*D, 5, =0.05%®

Therefore,

2 2 2 N ’
A[_j: V + = ko, |+ = N v0.05%0| + ——*——%0.05*D, , | =
dQ Q*®*Dhyd. Q*®*Dhyd. @ Q*Dhyd. Dhyd. *®

2 2 2
N N 0.05*N 0.05*N
— + * + - 4+ — =
2 2% d* O * @® * *@® *
(Q*@*Dhyd.) Q*o Dhyd. Q*P Dhyd. Q*d Dhyd.
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