Microscopic description of proton-induced spallation reactions with the CoMD (Constrained Molecular Dynamics) model

Angeliki Asimakopoulou, George A. Souliotis

Physical Chemistry Laboratory, Department of Chemistry University of Athens, Athens, Greece

Aldo Bonasera

INFN, Catania, Italy, Texas A &M University, Texas, USA

Martin Veselsky

IoP, Bratislava, Slovakia

Outline

Motivation: applications of spallation reactions

- Recent Literature of spallation
- Description of the theoretical CoMD model
- Comparison between experimental & theoretical preliminary results
- Future work plan
- Summary and conclusions

Accelerator- driven systems	(ADS)
-----------------------------	-------

- Energy amplification
- Transmutation of nuclear waste
- Sources of spallation neutrons
- Production of rare isotopes (ISOL facilities)

Astrophysics (reactions induced by cosmic rays in interstellar medium)

Accelerator driven system (ADS)

- High energy proton beam bombards a heavy metal target (Pb, Th, U)
- A large number of neutrons is produced by spallation &
- Directed to the subcritical core (e.g. Th, U)

Accelerator Transmutation of Waste (ATW)

- ATW: a variant of ADS
- Instead of fissile fuel there is a blanket containing the waste
- Nuclear waste (i.e. spent nuclear fuel): significant part is long-lived actinides (Np, Am, Cm)
- Transmutation of long-lived radioisotopes into stable or short-lived elements
- Possibility of safe storage

Element	Half-life (years)	Туре	Percent of Fuel
Sr-90	~30	Fission Product (FP)	0.04
Cs-137	~30	FP	0.09
Tc-99	~10 ⁶	FP	0.09
I-129	~10 ⁷	FP	0.03
Np-237	2.0 × 10 ⁶	Transuranic (TRU)	0.05
Am-241	400	TRU	0.01

Spallation neutron sources: Applications and Facilities

- Neutrons as probe in condensed matter science
 (e.g. gain new insights into atomic disordering in complex metal oxides)
- > Biology:
- Understanding new theories in Cellular Membrane organization (presence and formation of nanoscale lipid patches)
- simulation of lipid bilayer or cell membrane (understanding how viruses invade healthy cells)
- ESS, Lund, Sweden
- SINQ, Switzerland
- □ GEMS, Germany
- □ ISIS, UK
- SNS, Oak Ridge, USA
- LANSCE, Los Alamos, USA
- J-PARC, Japan

Spallation reaction mechanism

Recent Literature of spallation

M. V. Ricciardi et al., Phys. Rev. C 73, 014607 (2006)

- Experimental study of ${}^{238}\!U$ (1GeV/u) + p at the FRS in GSI
- Formation of 254 isotopes in the range $7 \le Z \le 37$
- Statistical code ABRABLA (abrasion- ablation) used for comparisons

J. L. Rodriguez-Sanchez, J. Benlliure, et al. Phys. Rev. C 90, 064606 (2014)

- Measurement of fission cross sections in ${}^{208}Pb$ + p at 370, 500, 650 MeV/u at GSI
- Description with INCL4.6 & ABLA07

Y. Ayyad, J. Benlliure et al., Physical Review C 89, 054610 (2014)

- Measurement of total fission cross sections at 300 1000MeV
- Experimental & theoretical study of ${}^{18}Ta + p$ (inverse kinematics) in GSI
- Description of reaction with intranuclear cascade models (INCL4.6 (Liege') and ISABEL) & deexcitation codes (ABLA07 and GEMINI++)

Recent Literature of spallation

A. A. Kotov et al., Physical Review C 74, 034605 (2006) Measurement of fission cross sections ^{nat}Pb ²⁰⁹Bi, ²³²Th, ²³³U, ²³⁵U, ²³⁸U, ²³⁷Np & ²³⁹Pu in energy range 200-1000 MeV Detection of 2 fission fragments by 2 (PPAC) J. L. Rodriguez- Sanchez, J. Benlliure et al., Physical Review C 91, 064616 (2015)

- ^{208}Pb (500 MeV/u) + p performed at GSI
- Measurement of isotopic cross sections, velocities of ff (Z = 27 to Z = 52), mass yields
- Identification of Z with MUSIC
- Comparison of results with INCL4.6 + ABLA07 code

Description of the theoretical CoMD model

CoMD: Quantum Molecular Dynamics Model (Semiclassical)

- The nucleons considered as gaussian wavepackets
- Phenomenological interaction N-N (Skyrme effective interaction)
- Asymmetry potential N-N depending on the nuclear density
- Application of Pauli Principle through appropriate restriction in the phase space
- \Box Recognition of fragment formation (R_{N-N} < 3.0 fm)
- Simulation of successive events (Monte Carlo approach)

Comparison between theoretical and experimental results: $p(500 \text{ MeV}) + {}^{208}Pb$

$p(500MeV) + {}^{208}Pb$ CoMD calculations Red line: standard $V_{sym} \sim \rho$ 10Blue line: soft $V_{sym} \sim \sqrt{\rho}$ 9 Black points: experiment 8 Cross Section (mb) 7 6 CoMD calculations 5agree very well with the experimental data 3 2**Our calculations indicate** symmetric fission: shell effects 507080 90 100 110 120 130 140 150 160 304060 not included A_{ff}

J. L. Rodriguez-Sanchez, J. Benlliure et al., Phys. Rev.C 91, 064616 (2015)

Comparison between theoretical and experimental results: p (500 MeV, 1000MeV) + ²⁰⁸Pb

Comparison between theoretical and experimental results: $p(100-1000MeV) + {}^{238}U$

M. V. Ricciardi et al., Phys. Rev. C 73, 014607 (2006)

Fission cross section/residue cross section

Neutron multiplicity

Future work plan

Systematic study of spallation observables

- Mass yield curves
- Energy distributions
- Fission time scale
- Pre-scission, post-scission, total nucleon emission (especially neutrons)
- Heavy-residue/fission-fragment production (residue data necessary)
- Contribution of the present spallation systematics to practical applications (e.g. sytematics of spallation neutrons)

Thank you!

Neutron multiplicity

Comparison between theoretical and experimental results: p (500 MeV, 1000MeV) + ${}^{18}Ta$

Y. Ayyad, J. Benlliure et al., Physical Review C 89, 054610 (2014)

Fission neutrons

Accelerator Transmutation of Waste (ATW)

- A significant proportion of wastes in used nuclear fuel is long-lived actinides (Np, Am, Cm)
- Following neutron capture heavy isotopes fission producing energy
- Bombardment of waste with intense neutron flux produced from spallation
- Heavier elements fission into less dangerous species
- Lighter elements are converted through neutron absorption

Spallation reactions

- Spallation is a nuclear reaction in which a high energy projectile interacts with a heavy nucleus
- High energy projectile interacts with target nucleons individually, as nucleonnucleon collisions, inducing a succession of binary collisions on a time scale 10⁻²² s. This is called *intra- nuclear cascade*
- Energetic neutrons, protons, pions and light particles are being emitted and others deposit their kinetic energy in the nucleus resulting in an excited residual in thermodynamical equilibrium, with E^{*} few MeV/nucleon
- **Equilibrium stage:** de-excitation of residual nucleus through
- evaporation(n, p, d, a) on time scale $10^{-18} 10^{-16}$
- fission into 2 fragments
- Fragmentation (residual nucleus breaks up fast into a large number of IMF's

Spallation neutrons

- $\hfill\square$ Number of neutrons ∞ beam energy & mass number of target
- Spallation *n* energy: from tens of keV up to incident proton energy, maximum 2 MeV
- Fission n energy: from thermal energies up to 10 MeV, maximum 1 MeV