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Definition and Observational Characteristics

Definition

Microquasars are X-Ray Binary Stars with twin collimated
relativistic jets’

Companion (donor) star E plasma/shocks
A main sequence star in coupled orbit __ : \. B
g

with the compact object
.compact object

Accretion disk
consists of plasma flowing from donor

star to the compact object

Jet
plasma outflows, perpendicular to the

disk Accretion disk

Companion. star

Compact object e
Black Hole or Neutron Star ' Rl ‘

1F. Mirabel et. al., 1999
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Definition and Observational Characteristics

An Observational view

@ Jet— Radio, IR and
opt. wavelengths
Donor star—
optical and IR
wavelengths
Accretion disk—
~-rays and X-rays
(center), optical and IR

wavelengths (away from

the compact object)
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Definition and Observational Characteristics

Why?

Analogy with AGN

Cusaniradio galaxy  Migroguasar [FI1740,7-2042

o Time scales—
proportional to the black
hole mass

e Similar
phenomenology

o Cosmological
importance

3 light yron=




Introduction
°

Aim of this work

Simulation of the neutrino & gamma ray emission from

Outline of our work?

PLUTO CODE . Visit
{hydrodynamic 3-D simulation) (3-D visualization)
‘ Line of sight code z ‘ Mathematica code
(ioL) | | (Emission coefficient output)

| Synthetic y-ray images ‘

(1DL)

2T. Smponias, T. S. Kosmas, MNRAS, 2011
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General

Neutrino producing reactions

Main contribution to neutrino emissivity in MQs jets, is due
to pp collisions?

o mt — pt + v, prompt neutrinos

o ut — et + v, + ve delayed neutrinos
Remarks:
@ The jet is considered to be of hadronic substance
@ The proton-proton collision with energy threshold of: Eipres = 1.22 GeV

@ Only a tiny portion of the bulk flow protons accelerated from the 1st order

Fermi acceleration* to energies up to 107 GeV

3M. M. Reynoso & G. E. Romero, Astron.& Astrophys., 2013
4F. M. Rieger et al, Astrophys. Space Sci., 2007
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Assumptions

We speculate that we have hadronic jets consisting of protons
only.

The source from which the secondary particles (pions) are
injected is isotropic and time-independent.

One-zone approximation:The particle acceleration happens in
such a way that the diffusion effects could be ignored.

Only the synchrotron and adiabatic expansion energy loss
mechanisms are considered.

The primary particles (protons) are accelerated via 1st-order
Fermi mechanism only.

Only prompt neutrinos are considered.
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Neutrino production

Mechanisms of Energy Loss/Gain

@ The acceleration to energy E, rate via 1lst-order Fermi
mechanism® t_ 1~ <B

accel. — E)p
e The particle can escape from the volume cell, t.1(z) = <
@ The jet expands adiabatically, ta_d1 = %

@ A charged particle moving with relativistic velocity into a
magnetic field emits synchrotron radiation,

3
=1 4 (me o1 B
sync = 3 \ mp mec

@ There are also energy losses due to photopion production,
tpy (E)

5Begelman et al.,ApJ, 1990
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Neutrino production

7+ injection function

The injection function of pions produced by pp interactions is given
by®:

1
Q;(;?Q(E) = nc/ %Np <E> F(PP) (x, E) inel <E>
E_ X X X "

Emax

where E stands for pion energy and x = E/E,,with E, the proton
energy

. 4\ 2
o oinel(E,) = (34.3 + 1.88L + 0.25(2) (1 - (EPE—;) > . cross
section for inelastic pp collisions

° F#pp): distribution function of pions per pp collisions

o N, = g—lg . injection rate of fast protons, A =2

6M. M. Reynoso & G. E. Romero, A& A, 2013,
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Neutrino production

Pion Distribution

xF®,=F(x), Ep=10000GeV

1 ( ) 1 1—x® 4
] FAPP Ep) = 4aB;x“~
: A (x, Ep) = 4aBrx (1 el —xa)>
I, 1 r(1 —2x%)
F X +
: I—x* 1+ mx(1—x%)
% 0.01*: X <1 — mWC2)1/2
xEp

x(dimensionless)
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Neutrino production

Functions and Parameters

The fitting parameters’ B, r, a, L, o written for our convenience:

° E,
L= Ini500Gay
a=3.67+ 0.83L + 0.075L2
r=26/a%°
B,=a+0.25
o = 0.98/a%°

@ n : density of cold particles at the volume of concern

7Kelner et al., PRD, 2006
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Neutrino production

Parameters of the fast protons injection

49, L
Ky = %
cRgIn (E, m,n>

@ (,e/: fraction of the total bulk energy
carried by non-thermal protons. From
HEGRA limits we adopt
qmex 2.9 x 1074

4] Lk: kinetic luminosity of the jet (energy
flow from a surface co-moving with the

jet) Ly ~ 10%%rg/sec

] R()Z initial radius of the jet cros-section
ie Ro >~ SRSCI" Radio image of supernova remnant W50 in green,

with infrared background in red, NRAO/AUI/NSF
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Neutrino production

Parameters for PLUTO's jet simulation

Parameter Comments
cell size (x10™cm) 0.25 | PLUTO’s computational cell
Piet (em™) 1.0x 10" initial jet matter density
Psw (cm™) 1.0x 1012 stellar wind density
Padw (em™) 1.0x 1012 accretion disk wind density
it (5) 1.5x 10 model execution time
Interpolation Method Linear
Integrator MUSCL-Hancock
EOS Ideal Equation of state
BinSep (cm) 4.0% 1072 Binary star separation
Mpuw/M sin 3-10 | Mass range of collapsed star
M i/ M i 10-30 | Mass range of Main Seq. star
S =w/c 0.26 Initial jet speed
Ik 2% 10% Jet kinetic luminocity
grid resolution 120 % 200 x 120 | PLUTO grid resolution (xyz)
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Neutrino production

Parameters for the calculation in a PLUTO's cell

Parameters Values Comments
z(cm) 1ot Cell's characteristic
dimension
M, Mmlm‘\ 10 Compact Object Mass
n(1/cm)? 10% Cold protons numerical
density
E™ (GeV) 107 Maximum energy of a fast
proton
E,™" (GeV) 1.22 Threshold energy for p-p
interaction
E™(GeV) 107 Maximum energy of a pion
produced from a fast proton
E™ (MeV) 139.5 Pion energy at rest
B(G) 400 Characteristic value of the
magnetic field in the jet
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Neutrino production

Steady state Pion Distribution

The time-independent pion distribution is derived from the
transport equation 8N§E’z) b(E,Z) + t;Y(z2)N(E, z) = Q(E, z)

Emax

N E dEl —Tﬂ-(E,EI)
(€9~ 15657, 2)e
with
E dE”t_l(E” Z)
/ _ T )
Tﬂ(EvE) - // | bﬂ—(E”) |

o bi(E) = —E(tyl + to] + tr} + t!) where t71
o t71(E,z) =t }(z) + t L (E):is the total rate of a pion
extinction from the unit volume (sum of pion decay rate and

escape rate)
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Neutrino production

Neutrino emission

The total emissivity of neutrinos is®

QV(E)Z) = Q7r—>V(E72) + Qu—w(Ea Z)

where:

Emax

Qi (E,2) = / dErt, e (E)Nx(Er, 2) X 91(51

— Iy — X)
E —In

(1—rx)
E:now is neutrino energy!
and r, = (%)2
o We neglect the contribution of u* decay®

@ The z dependence is not present, as we calculate the
aforementioned quantities into a PLUTO cell

8Lipari et al., PRD, 2007
9T. Smponias, O. T. Kosmas, Advan. High Energy Phys., 2015
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Magnetic field simulation

Mass Density for some MF values at the base of the jet
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Magnetic field simulation

MF Magnitude for some MF values at the base of the jet
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Particle Distributions

Pion Injection Function
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Particle Distributions

Steady State Pion Distribution

for L, = 10%%erg/s and g, = 2.9 x 1074
10 S ""-




Summary & Conclusions

Conclusions

@ The neutrino emission modeling is a useful tool for exploring
the physical conditions in MQ jets (i.e shock waves
propagation)

@ The employed methods can also be used for the gamma rays
emission of the jets.

@ There is a strong dependence of the jets collimation and
neutrino emission on the magnetic field.

@ The numerical tool that created could be used in future work
to obtain more realistic results.
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Future work

e Efficient calculation of neutrino emissivity (in progress)

o Extension of the adopted model to include more neutrino
producing reactions

o Consideration of extra leptonic content in the jet
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Summary & Conclusions

Prof. Theoxaris Kosmas
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