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Definition and Observational Characteristics

Definition

Microquasars are X-Ray Binary Stars with twin collimated
relativistic jets1

Companion (donor) star
A main sequence star in coupled orbit

with the compact object

Accretion disk
consists of plasma flowing from donor

star to the compact object

Jet
plasma outflows, perpendicular to the

disk

Compact object
Black Hole or Neutron Star

1F. Mirabel et. al., 1999
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Definition and Observational Characteristics

An Observational view

Jet→ Radio, IR and

opt. wavelengths

Donor star→
optical and IR

wavelengths

Accretion disk→
γ-rays and X-rays

(center), optical and IR

wavelengths (away from

the compact object)
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Definition and Observational Characteristics

Why?

Analogy with AGN

Time scales→
proportional to the black

hole mass

Similar
phenomenology
Cosmological
importance
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Aim of this work

Simulation of the neutrino & gamma ray emission from MQs

Outline of our work2

2T. Smponias, T. S. Kosmas, MNRAS, 2011
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General

Neutrino producing reactions

Main contribution to neutrino emissivity in MQs jets, is due
to pp collisions3

π± → µ± + νµ prompt neutrinos
µ± → e± + νµ + νe delayed neutrinos

Remarks:
The jet is considered to be of hadronic substance

The proton-proton collision with energy threshold of: Ethres = 1.22GeV
Only a tiny portion of the bulk flow protons accelerated from the 1st order

Fermi acceleration4 to energies up to 107GeV

3M. M. Reynoso & G. E. Romero, Astron.& Astrophys., 2013
4F. M. Rieger et al, Astrophys. Space Sci., 2007
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General

Assumptions

We speculate that we have hadronic jets consisting of protons
only.
The source from which the secondary particles (pions) are
injected is isotropic and time-independent.
One-zone approximation:The particle acceleration happens in
such a way that the diffusion effects could be ignored.
Only the synchrotron and adiabatic expansion energy loss
mechanisms are considered.
The primary particles (protons) are accelerated via 1st-order
Fermi mechanism only.
Only prompt neutrinos are considered.
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Neutrino production

Mechanisms of Energy Loss/Gain

The acceleration to energy Ep rate via 1st-order Fermi
mechanism5 t−1

accel . '
ceB
E)p

The particle can escape from the volume cell, t−1
esc (z) ∼= c

z

The jet expands adiabatically, t−1
ad = 2ub

3z

A charged particle moving with relativistic velocity into a
magnetic field emits synchrotron radiation,

t−1
sync = 4

3

(
me
mp

)3 σTB2γp
mec

There are also energy losses due to photopion production,
t−1
pγ (E )

5Begelman et al.,ApJ, 1990
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Neutrino production

π± injection function

The injection function of pions produced by pp interactions is given
by6:

Q(pp)
pion (E ) = nc

∫ 1

E
Emax

dx
x

Np

(
E
x

)
F (pp)
π

(
x ,

E
x

)
σinel

(
E
x

)
where E stands for pion energy and x = E/Ep,with Ep the proton

energy

σinel (Ep) = (34.3 + 1.88L + 0.25L2)

(
1 −

(
Ep,thr.

Ep

)4
)2

: cross

section for inelastic pp collisions

F (pp)
π : distribution function of pions per pp collisions

Np = K0
Eλ

p
: injection rate of fast protons, λ = 2

6M. M. Reynoso & G. E. Romero, A& A, 2013,
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Neutrino production

Pion Distribution

F (pp)
π (x ,Ep) = 4αBπxα−1

(
1 − xα

1 + rxα(1 − xα)

)4

×
(

1
1 − xα

+
r(1 − 2xα)

1 + rxα(1 − xα)

)
×
(

1 − mπc2

xEp

)1/2
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Neutrino production

Functions and Parameters

The fitting parameters7Bπ, r , a, L, α written for our convenience:

L = ln
Ep

1000GeV

a = 3.67 + 0.83L + 0.075L2

r = 2.6/a0.5

Bπ = a + 0.25

α = 0.98/a0.5

n : density of cold particles at the volume of concern

7Kelner et al., PRD, 2006
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Neutrino production

Parameters of the fast protons injection

K0 =
4qrelLk

cR2
0 ln

(
E ′max

p
E ′

p
min

)
qrel : fraction of the total bulk energy

carried by non-thermal protons. From

HEGRA limits we adopt

qmax
rel

∼= 2.9 × 10−4

Lk : kinetic luminosity of the jet (energy

flow from a surface co-moving with the

jet) Lk ∼ 1039erg/sec

R0: initial radius of the jet cros-section

i.e R0 ' 5RSch Radio image of supernova remnant W50 in green,

with infrared background in red, NRAO/AUI/NSF
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Neutrino production

Parameters for PLUTO’s jet simulation
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Neutrino production

Parameters for the calculation in a PLUTO’s cell
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Neutrino production

Steady state Pion Distribution

The time-independent pion distribution is derived from the
transport equation ∂N(E ,z)

∂E b(E ,Z ) + t−1
π (z)N(E , z) = Q(E , z)

Nπ(E , z) =
1

| bπ(E ) |

∫ Emax

E
dE ′Q(E ′, z)e−τπ(E ,E ′)

with

τπ(E ′,E ) =

∫ E

E ′

dE ′′t−1
π (E ′′, z)

| bπ(E ′′) |

bπ(E ) = −E (t−1
syn + t−1

ad + t−1
πp + t−1

πγ ) where t−1

t−1
π (E , z) = t−1

esc (z) + t−1
dec(E ):is the total rate of a pion

extinction from the unit volume (sum of pion decay rate and
escape rate)
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Neutrino production

Neutrino emission

The total emissivity of neutrinos is8

Qν(E , z) = Qπ→ν(E , z) + Qµ→ν(E , z)

where:

Qπ→ν(E , z) =
∫ Emax

E
dEπt−1

π,dec(E )Nπ(Eπ, z)×
Θ(1 − rπ − x)

Eπ(1 − rπ)

E:now is neutrino energy!

and rπ =
(

mµ

mπ

)2

We neglect the contribution of µ± decay9

The z dependence is not present, as we calculate the
aforementioned quantities into a PLUTO cell

8Lipari et al., PRD, 2007
9T. Smponias, O. T. Kosmas, Advan. High Energy Phys., 2015
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Magnetic field simulation

Mass Density for some MF values at the base of the jet

2 G 50 G 500 G
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Magnetic field simulation

MF Magnitude for some MF values at the base of the jet

2 G 50 G 500 G
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Particle Distributions

Pion Injection Function
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Particle Distributions

Steady State Pion Distribution

for Lk = 1039erg/s and qrel = 2.9 × 10−4
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Conclusions

The neutrino emission modeling is a useful tool for exploring
the physical conditions in MQ jets (i.e shock waves
propagation)
The employed methods can also be used for the gamma rays
emission of the jets.
There is a strong dependence of the jets collimation and
neutrino emission on the magnetic field.
The numerical tool that created could be used in future work
to obtain more realistic results.
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Future work

Efficient calculation of neutrino emissivity (in progress)
Extension of the adopted model to include more neutrino
producing reactions
Consideration of extra leptonic content in the jet
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