Hellenic Institute of Nuclear Physics The 3rd Workshop of the Hellenic Institute of Nuclear Physics

Alpha and ³He – particle production in the reaction ⁷Be+²⁸Si at near barrier energies

Onoufrios Sgouros University of Ioannina

8th of April, 2016, Athens, Greece

Goal: The description of both data sets into the Coupled Channels context

The Experiment

 The study of the elastic scattering and the relevant reaction mechanisms for the system ⁷Be+²⁸Si was performed at near barrier energies, namely at 13, 20 and 22 MeV corresponding to (1.1-1.9)V_{C.b}, in order to study the energy dependence of the optical potential as well as the influence of the reaction channels on the elastic scattering. **Reaction Mechanisms** (⁴He and ³He particle production)

The EXOTIC facility

- The experiment was visualized at the EXOTIC facility at the Laboratori Nazionali di Legnaro (LNL, Italy).
- ⁷Be production: In flight technique via the $p(^{7}Li, ^{7}Be)n$ reaction ($Q_{val.}$ =-1.64 MeV).

Experimental Setup

Identification of ³He and ⁴He reaction products at 22 MeV

⁴He particles energy distribution at 22 MeV

⁴He particles energy distribution at 13 MeV

The simulation code

 Monte Carlo technique: Events are randomly generated and they are filtered by constrains.

• 1st step: Construction of pairs (θ_{6Be} , P_{6Be}) in the center of mass system.

- 2^{nd} step: Construction of triplets (E_{α} , E_1 , E_2) and (P_{xi} , P_{yi} , P_{zi}) for each fragment in the rest frame of ⁶Be nucleus.
- 3rd step: Transformation of (P_{xi}, P_{yi}, P_{zi}) in the laboratory reference frame through a Galilean transformation and a two dimensional axes rotation.

K. K. Olimov et al., Int. J. Mod. Phys. E 25, 1650021 (2016)

Constrain: The ⁶Be angular distribution obtained via code FRESCO.

Constrains: The energy and the momentum conservation.

⁴He angular distribution data at the energy of 22 MeV

A. Pakou et al. PRC 71, 064602 (2005)

⁴He angular distribution data at the energy of 20 MeV

⁴He angular distribution data at the energy of 13 MeV

³He angular distribution data at the energy of 22 MeV

³He angular distribution data at the energy of 20 MeV

³He angular distribution data at the energy of 13 MeV

Energy (MeV)	⁴ He originating from direct processes (mb)	⁴ He originating from compound processes (mb)	Alpha particle multiplicities in the compound framework	Fusion (mb)
22	258	255	0.255	1000
20	218	239	0.268	893
13	34	69	0.304	228

Fusion cross sections for the system ⁷Be+²⁸Si

A. Pakou et al., PRC 87, 014619 (2013); EPJA 51, 55 (2015)

L.F. Canto et al., NPA 821, 51 (2009)

$$\sigma_F \to F(x) = \frac{2E_{c.m}}{\hbar\omega R_B^2} \sigma_F$$

$$E_{c.m} \rightarrow x = \frac{E_{c.m} - V_B}{\hbar \omega}$$

Summary

- Angular distribution measurements for ³He and ⁴He ions were performed for the system ⁷Be+²⁸Si at near barrier energies namely 13, 20 and 22 MeV.
- Angular distribution data of ³He and ⁴He were presented at 3 near barrier energies. The ⁴He data were treated in a statistical model framework and the contribution of the direct and the compound nucleus mechanisms to the total alpha production was estimated.
- The ratio R(direct to total) was calculated for the system ⁷Be+²⁸Si and it was found that present data are in reasonable agreement with previous measurements exhibiting an increasing behavior of the ratio while approaching the barrier.
- Taking into account ⁴He production due to compound processes and alpha particles multiplicities in the compound framework, fusion cross sections were deduced presenting excellent agreement with the systematics indicating <u>that fusion is a</u> <u>process which can be well described by a one-barrier penetration model theory</u>.
- <u>Under Progress: The description of both elastic scattering and reaction data into</u> <u>the Coupled Channels framework.</u>

Collaborators

INFN

- *Physics Department and HINP, The University of Ioannina, Ioannina, Greece*
- Departimento di Fisica and INFN Sezione di Padova, Padova, Italy
- INFN Sezione di Napoli, Napoli, Italy
- INFN Sezione di Milano, Milano, Italy
- INFN, Sezione di Catania, Catania, Italy
- Dipartimento di Scienze Fisiche, Universita di Napoli, Napoli, Italy
- Departamento di Fisica Aplicada, Universidad de Huelva, Huelva, Spain
- National Center for Nuclear Research, Warsaw, Poland
- Heavy Ion Laboratory, University of Warsaw, Warsaw, Poland
- Centro de Fisica Nuclear da Universidade de Lisboa, Portugal
- Institute of Accelerating Systems and Applications and Department of Physics, University of Athens, Greece

