

Energy Recover from PileUp Events in Silicon Detectors

Efstathios Stiliaris

Section of Nuclear and Particle Physics Department of Physics National & Kapodistrian University of Athens

Hellenic Institute of Nuclear Physics 2nd Workshop (HINPw2) April 12, 2014 Physics Department, Aristotle University of Thessaloniki

Outline

- Experimental Setup Data Acquisition System
- Pulse Shape Digitization
- Pulse Shape Analysis Techniques for Energy Calculations
- Identification of PileUp Events
- Energy Recovery
- Concluding Remarks

Experimental Setup – DAQ System

• Experiment: Measurement of the ⁸B+²⁸Si total reaction cross section at energies near the Coulomb barrier at the INFN EXOTIC Beam Facility (Legnaro, Italy).

• Incident ⁸B Beam Energy: 25 MeV–40 MeV with non-filtered ⁷Be and ⁶Li contaminants (parasitic beams).

• Target: A 3-stage Si target, acting as Δ E-E detector telescope. Energy signals are digitized by the CAEN V1729A flash ADC.

A. Pakou et al., PRC 87 (2013) 014619

Experimental Setup – DAQ System

Experimental Setup – DAQ System

CAEN V1729A Digitizer	
Channels	4
Sampling Freq.	2GS max
Resolution	14 bits
Full Scale Range	±1 Volt
LSB	125 μV
Sample Points	2520 p/ch
Internal Clock	50 or 100MHz

Flash ADC V1729A Digitization & Noise Removal

Run: b8_run4_1 Evt: 152890

Si-Detector Energy Calibration

<u>Left</u>: Identification Plot (Δ E1 vs Δ E2+E3) from the calibrated fADC signals.

<u>**Right</u></u>: Total Energy (\DeltaE1+\DeltaE2+E3) spectrum from the calibrated fADC signals. The strongly appearing isotopes correspond to the incident 8B beam and the non-filtered parasitic ⁷Be and ⁶Li beams.</u>**

Si-Detector Energy Calibration

Energy calibration curves for each stage of the Si telescope. The first Si detector (45μ m) is fitted with a second order polynomial, the other two parts (45μ m and 2000μ m) with a linear function.

PPAC Signals – Position Reconstruction

PPAC Signals – Time of Flight

ΔE -E Identification Plot

Time-of-Flight Spectrum

PileUp Detection

A two-peak structure in the derivative identifies a PileUp Event. The energy information can be easily reconstructed by integrating each identified peak separately.

PileUp Detection

PileUp Detection

Run: b8_run1_2 Evt: 103613

Identified PileUp Events

Recovered Energy from PileUp Events

Identified PileUp Events

Recovered Energy from PileUp Events

Statistics of PileUp Occurrence

Majority of the PileUp Event

1: Only on one Si-Detector
 2: Only on two Si-Detectors
 3: Occurrence on all three

Concluding Remarks

- An automatic search technique has been developed for the **identification** and the **energy reconstruction** of PileUp events in a Si telescope.
- The procedure is based on **Pulse Shape Analysis** techniques and utilizes the waveform information by time differentiating the digitized pulse signals.
- It has been successfully applied in a recent experiment studying the ⁸B+²⁸Si reaction at beam energies near the Coulomb barrier to recover the energy information from PileUp Events.
- The method can be **extended** and **generalized** to other forms of PileUp signals.

A. Pakou², D. Pierroutsakou³, M. Mazzocco⁴, A. Boiano³, C. Boiano⁵, D. Filipescu⁶, T. Glodariu⁶, J. Grebosz⁷,
A. Guglielmetti⁵, M. La Commara⁸, C. Parascandolo⁴, K. Rusek⁹, A.M. Sanchez-Benitez¹⁰, C. Signorini⁴, O. Sgouros²,
F. Soramel⁴, V. Soukeras², E. Strano⁴, L. Stroe⁶, N. Toniolo¹¹, D. Torresi⁴ and K. Zerva²

(1) Department of Physics, National and Kapodistrian University of Athens and the Institute of Accelerating Systems & Applications (IASA), Athens, GREECE

- (2) Department of Physics and HINP, The University of Ioannina, 45110 Ioannina, GREECE (3) INFN, Sezione di Napoli, ITALY (4) Dipartimento di Fisica and INFN Sezione di Padova, University of Padova, 35131 Padova, ITALY
- (5) Universtita degli Studi di Milano and INFN-Sezione di Milano (6) Horia Hulubei National Institute of Physics and Nuclear Engineering, Romania (7) IFJ-PAN, Krakow, Poland (8)Dipartimento di Scienze Fisiche and INFN – Sezione di Napoli
 - (9) Heavy Ion Laboratoty, University of Warsaw, Warsaw, Poland (10) Univesidad de Huelva, Huelva, Spain (11) INFN- Sezione di Padova

(*) The research leading to these results has received funding from the European Union Seventh Framework Programme FP7/2007-2013 under Grant Agreement Nr. 262010 - ENSAR.

Thank You!

Hellenic Institute of Nuclear Physics 2nd Workshop (HINPw2) April 12, 2014 Physics Department, Aristotle University of Thessaloniki

Energy Recover from PileUp Events in Silicon Detectors

Back-Up Slides

Hellenic Institute of Nuclear Physics 2nd Workshop (HINPw2) April 12, 2014 Physics Department, Aristotle University of Thessaloniki

