Exclusive muon capture rates

Panagiota Giannaka

Theoretical Physics Division, University of Ioannina, GR-45110, Greece

Supervisor: Professor T.S. Kosmas

2nd One-Day Workshop on New Aspects and Perspectives in Nuclear Physics April 12th,-2014-Thessaloniki Greece

Overview

Introduction

- Formalism of muon capture
- Donnelly-Walecka Multipole decomposition method
- pn-QRPA method

Results and Discussion

- Exclusive muon capture rates
- Partial muon capture rates
- Total muon capture rates

Weak Interaction Processes

Muon capture is a charged-current weak interaction process in nuclei like: • β^{\pm} -decay :

$$(A,Z)
ightarrow (A,Z+1) + e^- +
u_e$$

 $(A,Z)
ightarrow (A,Z-1) + e^+ + ar{
u_e}$

• lepton capture ($\ell = e^-, \mu^-, \tau^-$):

$$(A,Z)+e^-
ightarrow (A,Z-1)^*+
u_e$$

Orbital muon capture in nuclei

$$\mu_b^- + (A,Z)
ightarrow (A,Z-1)^* +
u_\mu$$

is an important μ^- -capture channel useful:

- in nuclear structure calculations (transition ME, nuclear spectra)
- in testing nuclear models employed for nuclear applications and astrophysics.

Panagiota Giannaka (UOI)

Formalism for μ^- -capture rates

The starting point is the weak interaction Hamiltonian

$$\hat{\mathcal{H}}_{w}=rac{\mathsf{G}}{\sqrt{2}}j_{\mu}^{lept}\hat{\mathcal{J}}^{\mu}$$

which provides the transition ME:

$$\langle f|\widehat{H_w}|i
angle = rac{G}{\sqrt{2}} \ell^\mu \int d^3x \, e^{-i\mathbf{q}\mathbf{x}} \langle f|\widehat{\mathcal{J}_\mu}|i
angle.$$

They enter the description of the cross secions for all semi-leptonic electro-weak nuclear processes.

 \overrightarrow{q} is the 3-momentum transfer, coming from the kinematics of the μ^- -capture and given by:

$$q \equiv q_f = m_\mu - \epsilon_b + E_i - E_f$$

(日) (圖) (E) (E) (E)

Formalism for the exclusive transition rates

The computation of exclusive μ^- -capture rates (between an initial $|J_i\rangle$ and a final $|J_f\rangle$ nuclear state) is written in terms of the nuclear ME of the eight different tensor multipole operators (Donnelly-Walecka decomposition method) as

$$\Lambda_{i \to f} = \frac{2G^2 q_f^2}{2J_i + 1} R_f \Big[\big| \langle J_f \| \Phi_{1s} (\widehat{\mathcal{M}}_J - \widehat{\mathcal{L}}_J) \| J_i \rangle \big|^2 + \big| \langle J_f \| \Phi_{1s} (\widehat{\mathcal{T}}_J^{el} - \widehat{\mathcal{T}}_J^{magn}) \| J_i \rangle \big|^2 \Big]$$

- Φ_{1s} represents the muon w-f (in the 1s μ^- -orbit).
- *R_f* is a recoil factor.
- The multipole operators $\widehat{\mathcal{M}}_J$ (Coulomb), $\widehat{\mathcal{L}}_J$ (longitudinal), $\widehat{\mathcal{T}}_J^{el}$ (transverse electric) and $\widehat{\mathcal{T}}_J^{magn}$ (transverse magnetic) contain polar-vector and axial-vector parts.

▲ロト ▲圖 ト ▲ 国 ト ▲ 国 ト の Q (3)

Nuclear matrix elements

The eight independent multipole operators

$$\begin{split} \hat{M}_{JM}^{coul}(\mathbf{qr}) &= F_{1}^{V}(q_{\mu}^{2})M_{M}^{J}(\mathbf{qr}), \\ \hat{L}_{JM}(\mathbf{qr}) &= \frac{q_{0}}{q}\hat{M}_{JM}^{coul}(\mathbf{qr}), \\ \hat{T}_{JM}^{el}(\mathbf{qr}) &= \frac{q}{M_{N}}\left[F_{1}^{V}(q_{\mu}^{2})\Delta_{M}^{\prime J}(\mathbf{qr}) + \frac{1}{2}\mu^{V}(q_{\mu}^{2})\Sigma_{M}^{J}(\mathbf{qr})\right], \\ i\hat{T}_{JM}^{mag}(\mathbf{qr}) &= \frac{q}{M_{N}}\left[F_{1}^{V}(q_{\mu}^{2})\Delta_{M}^{J}(\mathbf{qr}) - \frac{1}{2}\mu^{V}(q_{\mu}^{2})\Sigma_{M}^{\prime J}(\mathbf{qr})\right], \\ i\hat{M}_{JM}^{5}(\mathbf{qr}) &= \frac{q}{M_{N}}\left[F_{A}(q_{\mu}^{2})\Omega_{M}^{J}(\mathbf{qr}) + \frac{1}{2}(F_{A}(q_{\mu}^{2}) + q_{0}F_{P}(q_{\mu}^{2}))\Sigma_{M}^{\prime \prime J}(\mathbf{qr})\right], \\ -i\hat{L}_{JM}^{5}(\mathbf{qr}) &= \left[F_{A}(q_{\mu}^{2}) - \frac{q^{2}}{2M_{N}}F_{P}(q_{\mu}^{2})\right]\Sigma_{M}^{\prime \prime J}(\mathbf{qr}), \\ -i\hat{T}_{JM}^{el5}(\mathbf{qr}) &= F_{A}(q_{\mu}^{2})\Sigma_{M}^{\prime J}(\mathbf{qr}), \\ \hat{T}_{JM}^{mag5}(\mathbf{qr}) &= F_{A}(q_{\mu}^{2})\Sigma_{M}^{J}(\mathbf{qr}). \end{split}$$

include the form factors F_X , X=1,A,P and μ^V , functions of the 4-momentum transfer q_{μ}^2 .

Panagiota Giannaka (UOI)

6 / 21

(1)

Construction of nuclear ground state $|i\rangle$

To construct the nuclear ground state $|i\rangle = |g.s.\rangle$ we consider:

- A Woods-Saxon potential (description of strong nuclear field).
- The monopole part of the Bonn C-D potential (pairing interaction). Its renormalization is achieved through the two pairing parameters g^{p,n}_{pair} determined by the reproducibility of the energy gaps from neighboring nuclei (3-point formula).
- The solution of BCS equations gives the quasi-particle energies and the probabilities v_k^2 and u_k^2 of each single particle level to be occupied or unoccupied.

(日) (圖) (E) (E) (E)

Construction of nuclear ground state $|i\rangle$

Parameters for the renormalization of the interaction of proton pairs, g_{pair}^{p} , and neutron pairs, g_{pair}^{n} . They are fixed so as the corresponding experimental gaps, Δ_{p}^{exp} and Δ_{n}^{exp} , to be quite accurately reproduced.

Nucleus	g _{pair}	g ^p g _{pair}	Δ_n^{exp} (MeV)	$\Delta_n^{theor} \ (MeV)$	Δ_p^{exp} (MeV)	$\Delta_p^{theor} \ (MeV)$
²⁸ Si	1.1312	1.0601	3.1428	3.1429	3.0375	3.0377
³² S	0.8862	0.8230	2.0978	2.0979	2.0387	2.0386
⁴⁸ Ti	0.9259	0.9833	1.5576	1.5578	1.9112	1.9111
⁵⁶ Fe	0.9866	0,9756	1.3626	1.3626	1.5682	1.5683
⁶⁶ Zn	1.0059	0.9271	1.7715	1.7716	1.2815	1.2814
⁹⁰ Zr	0.9057	0.7838	1.8567	1.8568	1.1184	1.1183

・ 同 ト ・ ヨ ト ・ ヨ ト

The excited nuclear states-Diagonalization of QRPA Eqs.

The excited states $|f\rangle$ are derived by solving the QRPA equations:

$$\left(\begin{array}{cc} \mathcal{A} & \mathcal{B} \\ -\mathcal{B} & -\mathcal{A} \end{array}\right) \left(\begin{array}{c} X^{\nu} \\ Y^{\nu} \end{array}\right) = \Omega^{\nu}_{J^{\pi}} \left(\begin{array}{c} X^{\nu} \\ Y^{\nu} \end{array}\right),$$

First we define new amplitudes P^m , R^m

$$(\mathcal{A} - \mathcal{B})P^m = R^m, \quad (\mathcal{A} + \mathcal{B})R^m = \Omega_m^2 P^m$$

which are related to the X,Y through

$$X^{m} = \sqrt{\frac{1}{2}} (\Omega_{m}^{1/2} P^{m} + \Omega_{m}^{-1/2} R^{m}), \quad Y^{m} = \sqrt{\frac{1}{2}} (-\Omega_{m}^{1/2} P^{m} + \Omega_{m}^{-1/2} R^{m})$$

Finally, the diagonalization of the QRPA equations gives:

- X and Y forwards and backwards going amplitudes
- QRPA excitation energies

pn-QRPA method

Parameters of Excited states

- For the renormalization of the residual interaction (Bonn C-D) we use the g_{pp} and g_{ph} parameters which are determined from the reproducibility of the low-energy experimental spectrum.
- For measuring the excitation energies of the daughter nucleus from the ground state of the initial is necessary the shifting of the entire set of QRPA eigenvalues [1, 2].
 - **R**.A. Eramzhyan, et al, *Nucl. Phys. A* **642** (1998) 428.
 - V. Rodin and A. Faessler, Prog. Part. Nucl. Phys. 57 (2006) 226.

Table: The shift of the spectrum seperately of each state in MeV

Positive Parity States						Negative Parity States					
J^+	²⁸ Si	³² S	⁴⁸ Ti	⁵⁶ Fe	⁶⁶ Zn	J^{-}	²⁸ Si	³² S	⁴⁸ Ti	⁵⁶ Fe	⁶⁶ Zn
0+	2.60	0.00	0.65	1.60	0.90	0-	4.20	1.00	4.00	4.30	5.00
1^+	5.00	2.50	2.65	5.90	2.50	1^{-}	4.40	4.05	4.00	4.20	6.80
2^{+}	4.35	2.43	2.10	3.10	2.55	2-	5.80	4.40	5.10	6.80	3.85
3+	5.90	0.00	2.70	2.30	2.50	3-	6.00	3.98	4.10	6.80	2.60
4+	4.90	3.56	3.25	2.50	1.75	4-	5.00	2.57	4.25	3.50	3.55
5+	2.70	0.84	3.35	2.00	0.55	5-	6.50	0.00	3.05	3.50	3.00

Panagiota Giannaka (UOI)

Low-lying QRPA Excitation Spectrum

The first step of our results is the reproducibility of the excitation spectrum. Our QRPA spectra fit well the experimental data for low lying excitations.

State-by-state calculations of exclusive $\mu^-\text{-capture rates}$ Exclusive rates

$$\begin{split} \Lambda_{gs \to J_{f}^{\pi}} &\equiv \Lambda_{J_{f}^{\pi}} = 2G^{2} \langle \Phi_{1s} \rangle^{2} R_{f} q_{f}^{2} \quad \left[\begin{array}{c} \left| \langle J_{f}^{\pi} \| (\widehat{\mathcal{M}}_{J} - \widehat{\mathcal{L}}_{J}) \| \mathbf{0}_{gs}^{+} \rangle \right|^{2} \\ + \left| \langle J_{f}^{\pi} \| (\widehat{\mathcal{T}}_{J}^{el} - \widehat{\mathcal{T}}_{J}^{magn}) \| \mathbf{0}_{gs}^{+} \rangle \right|^{2} \\ \end{split}$$

Quenching effect

 $\frac{\frac{2^8 Si}{56} \Longrightarrow g_A = 1.262 \text{ free nucleon coupling constant}}{\frac{56 Fe}{56} \Longrightarrow g_A = 1.135 \text{ takes into account the small quenching effect indicated for medium-weight nuclei.}}$

Code

Our code provides: Seperate contributions induced by the components of muon capture operators

- polar vector
- axial vector
- overlap terms

State-by-state calculations of exclusive μ^- -capture

Contribution of each multipolarity J^{π}

Then, we focused on the separate contributions of each multipolarity (for $J^{\pi} \leq 5^{\pm}$). In the model space chosen, we have: $\frac{2^8 Si}{2^8 Si} \implies 286 \text{ states}$, $\frac{5^6 Fe}{2^8} \implies 488 \text{ states}$ We found that the most important contributions are these of $J^{\pi} = 1^-$ multipolarity.

Comparison of 1^- peaks with the empirical peak of Giant Dipole Resonance

For medium-weight and heavy isotopes the <u>empirical</u> giant dipole resonance peak is located at energy

$$E_{IVD} = 31.2A^{-1/3} + 20.6A^{-1/6}$$

This empirical peak is in good agreement with the 1^- pronounced peak of our results.

Panagiota Giannaka (UOI)

²⁸Si isotope

Individual contributions of the Polar-Vector, Λ_V , and Axial-Vector, Λ_A , parts to the total muon-capture rate versus the excitation energy ω .

Characteristic Peaks

- At 7.712MeV $\Longrightarrow 1_7^+$
- At 18.135MeV $\Longrightarrow 1^-_{22}$

Giannaka, Kosmas, *NPA* to be submitted.

- 4 同 6 4 日 6 4 日 6

⁵⁶*Fe* isotope

Individual contribution of the Polar-Vector, Λ_V , and Axial-Vector, Λ_A , to the total muon-capture rate as a function of the excitation energy ω . Characteristic Peaks

- At 8.278MeV \Longrightarrow 1^+_{10}
- At 18.716MeV $\Longrightarrow 1^-_{38}$
- *E_{IVD}* = 18.670*MeV* Good Agreement!!!

A B K A B K

Partial Rates of individual multipolarities

By summing over the individual contibution of the multipole states of each multipolarity we obtain the partial rates $\Lambda_{J^{\pi}}$

$$\begin{split} \Lambda_{J^{\pi}} &= \sum_{f} \Lambda_{gs \to J_{f}^{\pi}} = 2G^{2} \langle \Phi_{1s} \rangle^{2} \quad \left[\sum_{f} q_{f}^{2} R_{f} \left| \langle J_{f}^{\pi} \| (\widehat{\mathcal{M}}_{J} - \widehat{\mathcal{L}}_{J}) \| \mathbf{0}_{gs}^{+} \rangle \right|^{2} \right. \\ &+ \left. \sum_{f} q_{f}^{2} R_{f} \left| \langle J_{f}^{\pi} \| (\widehat{\mathcal{T}}_{J}^{el} - \widehat{\mathcal{T}}_{J}^{magn}) \| \mathbf{0}_{gs}^{+} \rangle \right|^{2} \right] \end{split}$$

f runs over all states of a given multipolarity J^{π} .

	²⁸ Si	³² S	⁴⁸ Ti	⁵⁶ Fe	⁶⁶ Zn	⁹⁰ Zr
0+	4.11	1.27	7.24	7.92	8.22	8.99
0-	14.03	13.30	10.78	9.64	7.94	6.89
1+	30.42	30.28	16.24	22.46	21.29	20.43
1-	35.74	38.01	43.88	42.18	44.21	42.43
2+	1.62	2.36	2.67	2.79	2.85	4.16
2-	12.81	13.54	16.97	12.72	13.32	13.57
3+	1.09	0.97	1.82	1.78	1.58	2.65
3-	0.10	0.15	0.23	0.32	0.34	0.52
4+	0.01	0.01	0.01	0.01	0.01	0.03
4-	0.06	0.10	0.14	0.16	0.23	0.30

The percentage of each multipolarity into the total muon-capture rate.

Partial transition rates $\Lambda_{J^{\pi}}$ (for $J^{\pi} \leq 4^{\pm}$) of ²⁸Si and ⁵⁶Fe isotopes. The most important partial transition rates (as expected) come from the $J^{\pi} = 1^{-}$ and $J^{\pi} = 1^{+}$ low lying excitations. ²⁸Si

- $J^{\pi} = 1^-$ contribute 36%
- $J^{\pi} = 1^+$ contribute 30%

⁵⁶ Fe

- $J^{\pi} = 1^{-}$ contribute 42%
- $J^{\pi} = 1^+$ contribute 22%

There are no similar detailed calculations to compare with.

Giannaka, Kosmas, *NPA* to be submitted.

イロト 不得下 イヨト イヨト 二日

Total μ^- -capture Results

The total muon capture rates are obtained by summing over all partial multipole transition rates.

$$\Lambda_{tot} = \sum_{J^{\pi}} \Lambda_{J^{\pi}} = \sum_{J^{\pi}} \sum_{f} \Lambda_{J^{\pi}_{f}}$$

Total Muon-capture rates $\Lambda_{tot}(imes 10^{\circ})s^{-1}$									
	Presen	it pn-QR	PA Calcu	lations	Experiment	Other theoretical Methods			
Nucleus	Λ_{tot}^V	Λ^A_{tot}	$\Lambda_{tot}^{V\!A}$	Λ_{tot}	Λ_{tot}^{exp}	Λ_{tot}^{theor} [1]	Λ_{tot}^{theor} [2]		
²⁸ Si	0.150	0.751	-0.009	0.892	0.871	0.823	0.789		
³² S	0.204	1.078	-0.017	1.265	1.352	1.269	1.485		
⁴⁸ Ti	0.628	1.902	-0.081	2.447	2.590	2.214	2.544		
⁵⁶ Fe	1.075	3.179	-0.129	4.125	4.411	4.457	4.723		
⁶⁶ Zn	1.651	4.487	-0.204	5.934	5.809	4.976	5.809		
⁹⁰ Zr	2.679	7.310	-0.357	9.631	9.350	8.974	9.874		

Zinner, Langanke, Vogel, PRC 74 (2006) 024326.

T. Marketin, et al, PRC 79 (2009) 054323.

イロト イポト イヨト イヨト

Summary and Conclusions

- Relying on an advantageous numerical code constructed by our group, we calculated all multipole transition ME entering the exclusive μ^- -capture rates.
- The required nuclear wave functions obtained within the context of the pn-QRPA using realistic two-body forces.
- Results for exclusive, partial and total muon capture rates are obtained using a free nucleon coupling constant $g_A = 1.262$ for light nuclei and a quenched value of $g_A = 1.135$ for medium-weight nuclei.
- As pn-QRPA provides an accurate description of all semileptonic processes, we have already extent our method in electron capture process.
- Next step
 — To extent this method to other semi-leptonic nuclear processes like beta-decay and charged current neutrino nucleus processes and apply our method in nuclear applications and astrophysics and netrino nucleosynthesis.

Collaborations

- **NCSR Demokritos** : D. Bonatsos
- University of Tuebingen, Germany: K. Kokkotas
- University of Darmstant, Germany: Group of Langanke

Acknowledgments

This research has been co-financed by the European Union (European Social Fund-ESF) and Greek national funds through the Operational Program "Education and Lifelong Learning" of the National Strategic Reference Framework (NSRF) - Research Funding Program: Heracleitus II. Investing in knowledge society through the European Social Fund.

Thank you

æ

イロト イヨト イヨト イヨト