Enhanced proton-neutron interactions and emergent collectivity in nuclei

Sophia Karampagia and Dennis Bonatsos

INPP, NCSR Demokritos

How do regular and simple patterns emerge in the structure of complex nuclei?
(NuPECC Long Range Plan 2010)

new coupling scheme

PHYSICAL REVIEW C 88, 054309 (2013)
Emergent collectivity in nuclei and enhanced proton-neutron interactions
D. Bonatsos, S. Karampagia,
R. B. Cakirli (Istanbul),
R. F. Casten (Yale), K. Blaum (MPI Heidelberg),
L. Amon Susam (Istanbul)

Starting point:
Athens, Dionyssos, October 2010
$\delta V p n(Z, N)=(B(Z, N)-B(Z, N-2)-B(Z-2, N)+B(Z-2, N-2)) / 4$

light nuclei spikes at $\mathrm{N}=\mathrm{Z}$

heavy nuclei spikes at Nval=Zval

- Light nuclei

SU(4) Wigner supermultiplet
($\mathrm{T}=1, \mathrm{~S}=0$) and ($\mathrm{T}=0, \mathrm{~S}=1$) pairs

- Heavy nuclei

Nilsson 0[110] pairs
$\Delta K\left[\Delta N \Delta n_{z} \Delta \Lambda\right]$

סVpn peaks

Z N last protons last neutrons

$$
\begin{array}{lllll}
168 \mathrm{Er} & 68 & 100 & 7 / 2[523] & 7 / 2[633] \\
172 \mathrm{Yb} & 70 & 102 & 1 / 2[411] & 1 / 2[521] \\
178 \mathrm{Hf} & 72 & 106 & 7 / 2[404] & 7 / 2[514] \\
180 \mathrm{~W} & 74 & 106 & 7 / 2[404] & 7 / 2[514] \\
& & & \mathrm{K}[\mathrm{~N} \mathrm{Nz} \wedge] & S=1
\end{array}
$$

Rick Casten Yale U.

Burcu Cakirli Istanbul U.

$R 4 / 2=E(4) / E(2)$

Nilsson model overlaps

$\Delta \mathrm{K}\left[\Delta \mathrm{N} \Delta \mathrm{n}_{\mathrm{z}} \Delta \Lambda\right]=0[110]$ pairs

Nilsson model overlaps

Nilsson

$$
N_{\mathrm{val}}=Z_{\text {val }}
$$

Theory-DFT

Nilsson

Theory-DFT

$\mathrm{S}=0$ (antiparallel spin projection)

Mario Valentinov Stoitsov (1953-2011)

XX International School on Nuclear Physics, Neutron Physics and Applications

September 16 - 22, 2013 Varna, Bulgaria

INTERNATIONAL ADVISORY COMNOTTEE
F. Azaiez (IPN, Orsay)
R. Casten (Yale, USA)
J. Dobaczewski (U. Warsaw) W. Furman (FLNP, Dubna) M. Harakeh (KVI Groningen)
A. Jokinen (U. Jyvaskyla)
L. Kostov (NRA, Bulgaria)
Y. Penionzhkevich (FLNR, Dubna)
A. Richter (TU, Darmstadt)
D. Tonev (INRNE, Sofia)
V. Zelevinsky (MSU, USA)
V. Voronov (BLTP, Dubna)
A. Bracco (U. Milan)
G. De Angelis (LNL, Italy) J. Draayer (SURA)
S. Gales (CNRS) M. Itkis (JINR, Dubna)
J. Jolie (U. Koeln)
N. Pietralla (TU, Darmstadt)
M. Ploszajczak (GANIL)
H. Sakai (RIKEN)
H. Stoecker (GSI)
N. V. Zamfir (NIPNE-Bucharest)
S. Zhou (Chinese Academy of Sc.)

Main Topics

Institute for Nuclear Research and Nuclear Energy Bulgarian Academy of Science 72 Boul. Tzarigradsko chaussee 1784 Sofia, Bulgaria Phone: +359 29743761 Fax: +35929753619 e-mail: varna2013@inrne.bas.bg http://www.inrne.bas.bg/international-school-varna/

LOCAL ORGANIZING COMNMITJIEE

Ch. Stoyanov (chairperson)
S. Dimitrova (co-chairperson)
E. Stefanova (scientific secretary)
D. Tarpanov
P. Zhivkov
\checkmark Nuclear excitations at various energies
\checkmark Nuclei at high angular moments and temperature
\checkmark Structure and reactions far from stability
\checkmark Symmetries and collective phenomena
\checkmark Methods for lifetime measurements
\checkmark Astrophysical aspects of nuclear structure
\checkmark Neutron nuclear physics
\checkmark Nuclear data
\checkmark Advanced methods in nuclear waste treatment
\checkmark Nuclear methods for applications

Nilsson level scheme

${ }^{154} \mathrm{Sm}$: 12 valence protons
 10 valence neutrons

12 valence protons sit in the $(24,0)$ irrep of $U(15)$

$(54,4)$ irrep for all valence nucleons

		50-82	50-82	sdg	sdg
		3s1/2	1/2[411]	3s1/2	1/2[411]
		2d3/2	1/2[400]	2d3/2	1/2[400]
6.1			3/2[402]		3/2[402]
6.0	${ }_{\mathrm{d}_{3 / 2}}^{\mathrm{s}^{2}}$	2d5/2	1/2[431]	2d5/2	1/2[431]
			3/2[422]		3/2[422]
	h		5/2[413]		5/2[413]
	$\mathrm{h}_{11 / 2}<$	$1 \mathrm{~g} 7 / 2$	1/2[420]	$1 \mathrm{~g} 7 / 2$	1/2[420]
	di/2		3/2[411]		3/2[411]
	g		5/2[402]		5/2[402]
	50		7/2[404]		7/2[404]
	${ }_{0.0}^{+1}$	1h11/2	1/2[550]	1g9/2	1/2[440]
	Deformation, ε		3/2[541]		3/2[431]
			5/2[532]		5/2[422]
	$0[110]$ partners		7/2[523]		7/2[413]
			9/2[514]		9/2[404]
	left out		11/2[505]		

(ब)
${ }^{154} \mathrm{Sm}: 12$ valence protons
10 valence neutrons

12 valence protons in the [222222] irrep of $\mathrm{U}(15) \times 10$ valence neutrons in the [22222] irrep of $\mathrm{U}(21)$ つ $(24,0)$ most leading $\operatorname{SU}(3)$ irrep of $\mathrm{U}(15) \quad \times(30,4)$ most leading $\mathrm{SU}(3)$ irrep of $\mathrm{U}(21) \supset$
$\mathrm{SU}(3)$ irreps labelled (λ, μ)
$(54,4)$ irrep for all valence nucleons

He was very happy that there are still theorists for whom theory is not just massively computational but, as he said,
"has some brains behind it" rather than just running some massive black box code on a supercomputer. Of course, such approaches are also valuable (supercomputer, that is - we know, Mario's DFT for example) but they should not be the only thing.
(APS DNP Meeting, Newport News, VA, 26-10-2013)

- New coupling scheme for symmetry based calculations
- Different kinds of pairing $[(T=1, S=0), \quad(S=1, T=0)]$ favored at different regions of the nuclear chart
R.B. Cakirli: IUPAP Young Scientist Prize 2013

Reductions $\mathrm{U}(\mathrm{N})>\mathrm{SU}(3)$
$\mathrm{N}=10,15,21,28$
N. Minkov (INRNE, Sofia)
I. Assimakis (NTUA)

Hamiltonian
non-diagonal third, fourth order terms
conserving SU(3)
breaking β, γ degeneracy

$7^{\text {th }}$ Workshop on Shape-Phase Transitions and Critical Point Symmetries in Nuclei

March 10-13, 2014
Sevilla, Spain

NUBA-1, Adrasan-Antalya 15-22 September 2014

