"Study of ^{nat}Mg(d,d₀) reaction at detector angles between 90° and 170°, for the energy range E_{d,lab}=1660-1990 keV"

> Georgiadou Anastasia University of Ioannina Greece

Contents

- Introduction
- Motivation
- Experimental setup
- Procedure
- Data analysis
- Results
- Conclusions

Introduction

Magnesium is one of the most frequently used metals.

Used in the industry: production of several high-volume parts and for fabrication of numerous electronic devises.

Used for research of superconductive materials and applications.

 IBA: one of the most important non-destructive analytical technique.
 Can facilitate the composition

Can facilitate the composition and the elemental depth profile in the near surface layer of solids.

Motivation

- EBS: one of IBA techniques where light beam particles (protons, deuterons) with energy of a few MeV can be used to solve the problem of Mg depth profiling.
- Due to low Z value Mg usually forms complex compounds with other light elements

Motivation

- d-NRA (d,p_x) data from V. Paneta et al.
- It should be noted that there is a lack of elastic scattering experimental data suitable for EBS in the literature.
- The knowledge of the non-Rutherford ^{nat}Mg(d,d₀) reaction cross section is of prime importance for the simultaneous depth profiling analysis by d-NRA and EBS

Experimental setup

NCSR "Demokritos", Athens, Greece

- Target from evaporation : MgO,MgCl, Au
- Cylindrical scattering chamber R≈40cm
- Target was placed at a distance of 15-25cm from the detectors and tilted to the beam by 45°.
- The detection system consisted of 6 Silicon surface barrier detectors.

Procedure

- Energy range E_{d,lab}=1660-1990 keV, in steps 5keV and for detector angles between 90-170 deg.
- Beam energy calibration.
 ²⁷Al(p, γ){resonance 991,89 KeV}

Data analysis

Data analysis

Typical experimental spectra with the simulated one:

In these calculations the N_{au}/N_{Mg} was used as a free parameter and the cross section were taken from IBANDL,R-matrix calculator Sigma Calc.

Using the backward detection angles 150 and 170 deg due to their superior resolution.

Results

Elastic scattering excitation functions were recorded in steps of 5keV, while a 2keV Step was adopted in the energy region around 1800keV.

Results

The main source of $\approx 5\%$ uncertainty of the elastic scattering cross section, originates from the target characterization.

The statistical uncertainty from the yield ratio (Y_{Mg}/Y_{Au}) was much less than $\approx 1\%$, therefore it was neglected.

Results

Forward angles 55° and 70° presented as byproduct of the same campaign designed for *R*-matrix reaction analysis of the system $d+^{24}Mg$, aimed to level characterization of the compound nucleus ²⁶Al.

Conclusions

- Elastic scattering cross section data ^{nat}Mg(d,d₀) were obtained for the first time in the energy range at backward angles relative to EBS depth profiling studies.
- In this way EBS and d-NRA methods can be used to define the depth profiling of magnesium.
- The same experimental data will be used to obtain spectroscopic information for the ²⁶Al compound nucleus.

Collaboration

N. Patronis^{a,*}, X. Aslanoglou^a, M. Axiotis^b, A. Georgiadou^a, M. Kokkoris^c, A. Lagoyannis^b, P. Misailides^d, V. Paneta^{b,c}, R. Vlastou^c

^aDepartment of Physics, University of Ioannina, 45110 Ioannina, Greece ^bTandem Accelerator Laboratory, Institute of Nuclear Physics, N.C.S.R. Demokritos, Aghia Paraskevi, 15310 Athens, Greece ^cDepartment of Physics, National Technical University of Athens, Zografou Campus, 15780 Athens, Greece ^dDepartment of Chemistry, Aristotle University, GR-54124 Thessaloniki, Greece

THANK YOU FOR YOUR ATTENTION

ANASTASIA GEORGIADOU UNIVERSITY OF IOANNINA

2nd Hellenic Institute of Nuclear Physics, Workshop.