

National and Kapodistrian University of Athens Department of Physics Nuclear & Particle Physics Section

The Compton Camera in the γ-Ray Imaging

<u>M. Mikelia</u>, A.-N. Rapsomanikisa, M. Ziogaa and E. Stiliarisa, b

^(a) Department of Physics, National and Kapodistrian University of Athens, Athens, GREECE ^(b) Institute of Accelerating Systems & Applications (IASA), Athens, GREECE

of loanning

1st One Day Workshop on New Aspects and Perspectives in Nuclear Physics 8th of September, 2012 Ioannina, Greece

From the Anger Camera to the Compton Camera

γ-Camera

Compton Camera

Advantages of the Compton Camera

- Higher sensitivity
- Lower dose than conventional γ-Camera systems

Angers' Camera Components

- Collimator
- Scintillation Crystal
- Photomultiplier
- Amplification System
- Read Out System (Position and Energy Reconstruction)

Angers' Camera shows:

- High radiation dose
- Poor sensitivity

Collimator

Compton Camera Principle

The initial photon of the source is scattered on the first detector and then absorbed in the second one. A conical surface is formed using the interaction locations and the energies calculated.

$$\cos\theta = 1 + m_0 c^2 \left(\frac{1}{E_{\gamma}} - \frac{1}{E_{\gamma}'}\right)$$

• A plane is placed vertically to the systems' axis and it is segmented into pixels.

• It is moved forward and backward, forming a voxel.

• The density of its pixel, because of the overlap of the plane with the cones, is measured.

Location of the source

Advantages of the Compton Camera

- Uses electronic collimation
- Reconstructs a wide range of energy radiation
- Provides high sensitivity
- Reduces the patient dose

Energy Dependance

The density of all pixels can show the location and the geometrical characteristics of the radiation distribution.

N_{src} : Number of source emitted photons
N_{scat} : Number of photons reached scatterer
N_{int_scat}: Photons interacted with scatterer

N_{coin} : Number of detected coincidences

The performance of a Compton Camera is studied through <u>GEANT4/GATE</u> simulations for various geometrical characteristics.

Distance Src-Scat	Rs=240mm		Rs=200mm	
	Ncoin / Nscat	Ncoin / Nabs	Ncoin / Nscat	Ncoin / Nabs
(mm)	(%)	(%)	(%)	(%)
64	8.796	0.945	9.580	0.731
54	8.559	1.063	9.447	0.835
44	8.015	1.194	8.877	0.956
34	7.433	1.402	8.267	1.149
24	6.641	1.712	7.469	1.466
14	5.759	2.269	6.323	2.020
4	4.726 •	3.546	4.928	3.330

- Ncoin / Nabs (%)
- Ncoin / Nscat (%) Rs=200mm
- Ncoin / Nabs (%)

The detected efficiency for the events reached the scatterer after being emitted from the source. The coincidence efficiency with respect to the events detected on the scatterer with a radius Rs=24mm.

The geometrical characteristics affect the systems' efficiency.

Physical Background

Wrong Reconstruction $|\cos \theta| > 1$

EFFICIENCY ~ 40%

Future Plans

• As a first detector use a Double Sided Silicon Detector (DSSD)

• Replace the first detector with two scatterers

