

APPLICATION OF ION BEAM AND RADIOCHEMICAL TECHNIQUES IN MATERIALS SCIENCE AND ENVIRONMENT

Fotini NOLI

Department of Chemistry, Aristotle University of Thessaloniki GREECE

Ion-Beam Analysis (IBA) techniques

Our aim:

- the characterization of near surface layers of biomaterials in order to investigate their corrosion resistance and biocompatibility
- the characterization and the investigation of the oxidation and corrosion resistance of materials used for industrial applications.

The materials

- Ti-alloys (e.g. Ti-6Al-4V) and Co-based alloys (CoCrMo) used as orthopaedic, dental and cardiac implants
- stainless steels implanted with Al, Zr, Mg, Y for industrial applications
- Cu-alloys in environment and in cultural heritage

Sample	Treatment	T (°C)	Thickness	Ti (%)	Ni (%)	N (%)	O (%)	N/Ti
			(µm)					
TiNi0*	TiN	300	0.35	48	0	44	8	0.92
TiNi0-N	Nitridation	600-300	0.40	47	0	44	9	0.94
	+							
	TiN coating							
TiNi20	TiN-Ni	300	0.43	36	20	36	8	1.00
	coating							
TiNi20-N	Nitridation	600-300	0.44	36	19	36	9	1.00
	+							
	TiN coating							

*0, 20 correspond to the Ni-content, N corresponds to the nitrided sample.

Sample	Treatment	Т (°С)	Thickness (μm)	Co(%)	Cr (%)	Mo (%)	O (%)	N (%)
CoCrMo	reference	-	-	60	35	5	-	-
CoCrMo+N	Nitridation	395	4.6	40	20	6	-	34
CoCrMo+O	oxidation	400	0.3	54	20	2	34	-
CoCrMo+ N+O	Nitridation+ oxidation	395 and 400	6.0	40	20	2	15	23

The samples were also investigated prior and after the corrosion tests by d-RBS and NRA ($E_d = 1.35$ MeV).

The NRA data also proved that the CoCrMo+N+O showed the lowest deterioration and the best corrosion resistance.

TiN-Ni nano-coating on TAV

and ¹⁴N(d,p) nuclear reactions)

Rutherford Backscattering Spectrometry

The H.V.E. 5.5 MV Tandem vdG accelerator of the NCSR *Demokritos* (Athens) and the utilized Charles Evans & Assoc. scattering chamber

Microbeam

Line

RBS-spectra; a) Y-implanted steel (40keV) and non implanted steel oxidised at 900 °C, b) Y-implanted steel (55 and 80 keV respectively) oxidised at 900 °C

Application of RBS to Corrosion Studies

From:

F. Noli, P. Misaelides, A. Hatzidimitriou, E. Pavlidou and M. Kokkoris, Investigation of artificially produced and natural copper patina layers, J. Mat. Chem. 13(2003)114

Investigation of Cu-Patinas (natural and synthetic)

Work performed within the frame of the ENV4-CT95-0098 Project

Sulfur distribution in patina layer determined by means of ${}^{32}S(p,p'\gamma){}^{32}S$ nuclear reaction

(E_{res} = 3716 keV, E_{γ} = 2230 keV, dσ(E, 90°)Γ/dΩ) = 48.10 mb/sr from C. Tsartsarakos, P. Misaelides and A. Katsanos, Nucl. Instr. and Meth. B45(1990)33)

Natural patina (Vienna Hofburg)

From

F. Noli, P. Misaelides, M. Kokkoris, Investigation of natural and artificially produced copper patina layers using ion-beam analysis techniques, Proc. of the Nuclear and Related Techniques Conference, La Habana, Cuba, October 2003 Corroded (♦) and non-corroded (□) mixed patina consisting of antlerite (CuSO₄.2Cu(OH)₂) + brochantite (CuSO₄. 3Cu(OH)₂) + chalcanthite (CuSO₄.5H₂O)

Radiochemical techniques

Our aim:

- measurement of the natural radioactivity using γ-ray sectroscopy
- determination of alphaemmiters (radionuclides: U-238, U-235, U-234, Ra-226, Ra-224) using α-ray sectroscopy

The materials

-Environmental samples (waters, soils, sediments, air filters etc.)

Thank you