Elastic backscattering measurements and optical potential analysis for the systems ^{6,7}Li + ⁵⁸Ni, ^{116,120}Sn, ²⁰⁸Pb at sub- and near – barrier energies

Zerva Konstantina Laboratory of nuclear Physics Physics Department University of Ioannina

Outline

- Motivation
- Experimental setup
- The results: Determination of barrier distribution via elastic scattering

Optical potential analysis

Conclusion: Optical Potentials

Reaction mechanisms

Motivation

Elastic backscattering measurements are valuable tool for:

- Probing the nuclear potential at sub and near barrier energies
- Probing reactions mechanisms connected with direct procedures

Excitation functions of σ/σ_R

Determination of barrier distributions

Conclusion:

Backscattering technique is a more accurate technique to probe the optical potential than the conventional angular distribution

Barrier distribution via elastic scattering

Zerva Konstantina - University of Ioannina

Optical model analysis

Starting point: Imaginary potential

Main steps:

- Draw a straight line to define the imaginary potential above the Coulomb barrier.
- Define the energy point where a second line should be drawn.
- Define the slope of the second line.
- Define the last energy point, where the imaginary potential drops to zero.

Dispersion relation

Optical model analysis

⁶Li on different targets

EPJA Vol.48 (7), p.102, 2012

Zerva Konstantina - University of Ioannina

Optical model analysis

⁷Li on different targets

EPJA Vol.48 (7), p.102, 2012

Reaction mechanisms

^{6,7}Li on different targets

Calculated by K. Rusek - EPJA Vol.48 (7), p.102, 2012

Zerva Konstantina - University of Ioannina

Conclusions

Optical potential

The backscattering technique is a valuable tool for predicting the optical potential at sub and near barrier energies.

For weakly bound nuclei the imaginary potential persists either with an increasing trend (⁶Li) or a flat behavior (⁷Li) to sub-barrier energies near $E/V_{bar}=0.5$

For ⁶Li the rising part has the larger slope for the heavier targets and the smaller slope for the lighter.

These measurements indicate, especially for ⁷Li, that the dispersion relation connecting the imaginary and the real part of the optical potential may not be valid to weakly bound nuclei in accordance to initial predictions by Satchler.

Reaction mechanisms

Coupling to the continuum are strong and important.

Collaborators

- University of Ioannina, Greece
- INFN-LNS, Catania, Italy
- Dipartimento di Scienze Fisiche and INFN, Università di Napoli, Italy
- The Andrzej Soltan Institute for Nuclear Studies and Warsaw University, Poland
- CEA SACLAY, France
- Dipartimento di Fisica and INFN, Università di Padova, Italy
- National Institute for Physics and Nuclear Engineering (NIPNE), Romania
- University of Huelva, Spain

