Introduction	Beam production	Experimental setup	First results	Conclusions

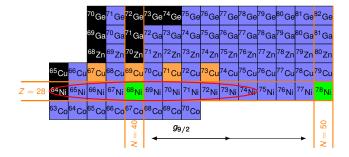
Transfer reactions at REX-ISOLDE: The ⁶⁶Ni(d,p)⁶⁷Ni experiment

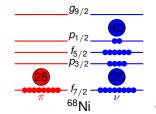
Nikolas Patronis

Department of Physics, University of Ioannina

HINP Workshop, Ioannina 8 Sep 2012

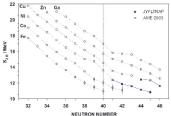
《日》《圖》《臣》《臣》 문[日》

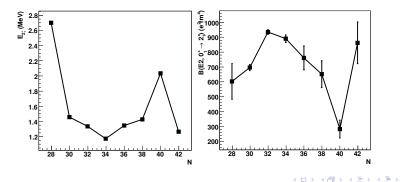

▲□▶ ▲□▶ ▲目▶ ▲目▶ 三日本 のへで

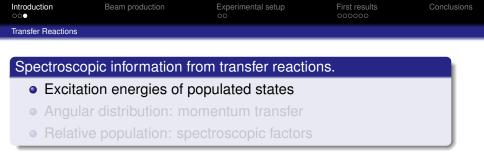

Introduction ●○○	Beam production	Experimental setup	First results	Conclusions
The N=40-Region				

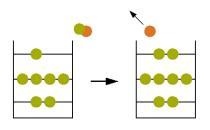
⁷⁰ Ge ⁷¹ Ge	⁷² Ge	⁷³ Ge	⁷⁴ Ge	⁷⁵ Ge	⁷⁶ Ge	⁷⁷ Ge	⁷⁸ Ge	⁷⁹ Ge	⁸⁰ Ge	⁸¹ Ge	⁸² Ge
⁶⁹ Ga ⁷⁰ Ga	⁷¹ Ga	⁷² Ga	⁷³ Ga	⁷⁴ Ga	⁷⁵ Ga	⁷⁶ Ga	⁷⁷ Ga	⁷⁸ Ga	⁷⁹ Ga	⁸⁰ Ga	⁸¹ Ga
⁶⁸ Zn ⁶⁹ Zn	⁷⁰ Zn	⁷¹ Zn	⁷² Zn	⁷³ Zn	⁷⁴ Zn	⁷⁵ Zn	⁷⁶ Zn	⁷⁷ Zn	⁷⁸ Zn	⁷⁹ Zn	⁸⁰ Zn
65Cu ⁶⁶ Cu ⁶⁷ Cu ⁶⁸ Cu	⁶⁹ Cu	⁷⁰ Cu	⁷¹ Cu	⁷² Cu	⁷³ Cu	⁷⁴ Cu	⁷⁵ Cu	⁷⁶ Cu	⁷⁷ Cu	⁷⁸ Cu	⁷⁹ Cu
$Z = 28 \frac{64}{10} \frac{65}{10} \frac{66}{10} \frac{67}{10}$	⁶⁸ Ni	⁶⁹ Ni	⁷⁰ Ni	⁷¹ Ni	⁷² Ni	⁷³ Ni	74 N	⁷⁵ Ni	⁷⁶ Ni	⁷⁷ Ni	⁷⁸ Ni
⁶³ Co ⁶⁴ Co ⁶⁵ Co ⁶⁶ Co	⁶⁷ Co	⁶⁸ Co	⁶⁹ Co	⁷⁰ Co							
	= 40		<i>g</i> 9	/2	-						= 50
	Z	-				•				-	Z

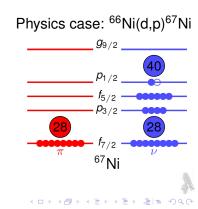
Introduction ●○○	Beam production	Experimental setup	First results	Conclusions
The N=40-Region				

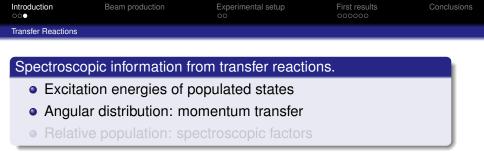


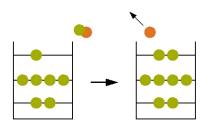

Introduction o • o	Beam production	Experimental setup	First results	Conclusions
The N=40-Region				
		22 T <u>Cu</u> 0	70 00	

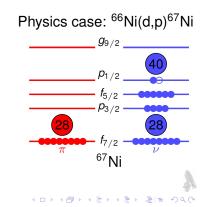

Results up to now

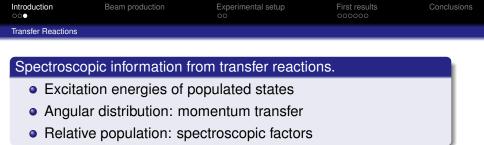

- The 2⁺ state at higher excitation energy
- Small B(E2,0⁺ \rightarrow 2⁺)
- No irregularity around N=40 at S_{2n}
- Fragile nature of the N=40 subshell closure
- Other reasons \neq magicity

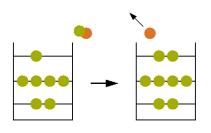


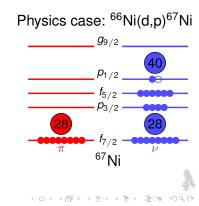

고말

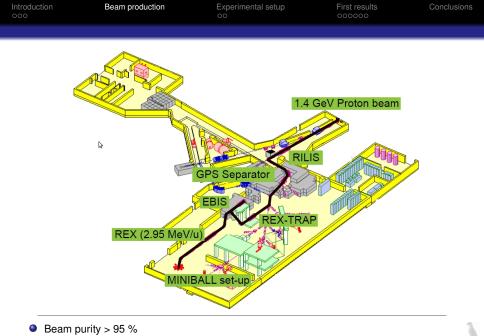


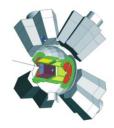










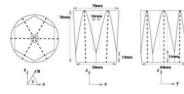


▲□▶ ▲□▶ ▲目▶ ▲目▶ 三日本 のへで

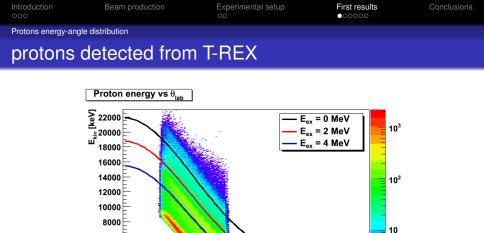
Beam intensity > 10⁶ pps

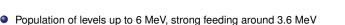
T-REX setup

Detector	Thickness	Segmentation
Forw. ΔE barrel	140 µm	16 resistive stripes \perp beam
Forw. E Barrel	1 mm	-
Backw. ΔE Barrel	140 μ m	16 resistive stripes \perp beam
Backw. E Barrel	1 mm	-
Backw. ΔE CD	500 μ m	16 annular. $ imes$ 24 radial
Backw. E CD	1.0 mm	-
(Forw. $\Delta E CD$)	500 μ m	16 annular. $ imes$ 24 radial
(Forw. E CD)	1.5 mm	-



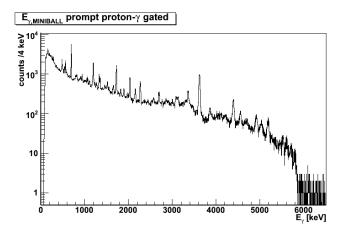
Introduction	Beam production	Experimental setup	First results	Conclusion
000		0	000000	
The MINIBALL setup				





Main characteristics

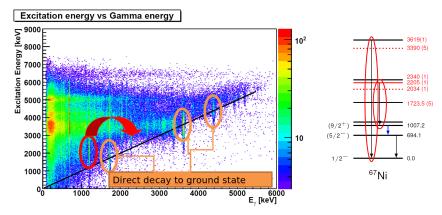
- 8 Miniball clusters
- Each cluster: 3 HPGe crystals
- Each crystal: 6-fold segmented
- 8% efficiency @ 1 MeV



 $\boldsymbol{\theta}_{\text{lab}}$

⁶⁷Ni excitation energy can be deduced from measured proton energy

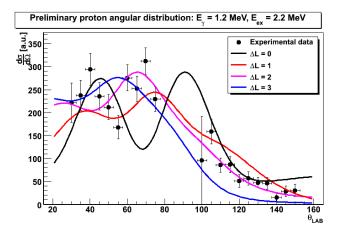
Introduction	Beam production	Experimental setup	First results ○●0000	Conclusions
p- γ coincidences				


Doppler corrected γ -spectrum

(日)

- Very rich proton-gated γ-spectrum
- γ-transitions up to 5700 keV are observed
- p- γ - γ analysis was feasible

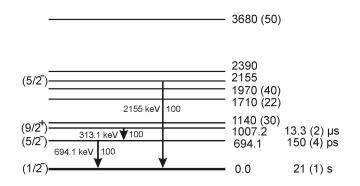
Introduction	Beam production	Experimental setup	First results ○○●○○○	Conclusions
p- γ coincidences				
Excitation	energy vs γ -	energy		



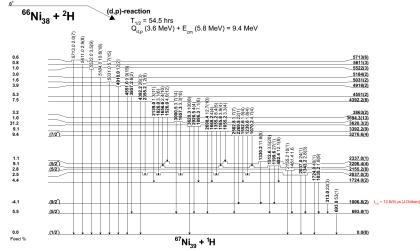
(日) (圖) (일) (일) (일) (일)

Extensively new spectroscopic information of ⁶⁷Ni

Introduction	Beam production	Experimental setup	First results ○○○●○○	Conclusions
Spin and parity assignm	ient			


Proton angular distributions

Preliminary angular distribution for the 2.2 MeV state


Slightly supporting L=2 transfer (hence d5/2 candidate)

000	Beam production	oo		Conclusions		
Spectroscopic info	mation					
Previously known levels for ⁶⁷ Ni						

< □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □

▲□▶ ▲圖▶ ▲ 圖▶ ▲ 圖▶ ▲圖▲ のQの

Introduction	Beam production	Experimental setup	First results	Conclusions
Conclusi	ons and out	ook		

The first one-neutron transfer experiment around ⁶⁸Ni using T-REX and MINIBALL @ REX-ISOLDE was successful

- Population of excited states up to 6 MeV
- Extended new spectroscopic information is already deduced
- Analysis on spectroscopic factors has to be finalized
- Comparison with theoretical shell model calculations

Introduction 000	Beam production	Experimental setup	First results	Conclusions
Conclus	ione and outl	ook		

- The first one-neutron transfer experiment around ⁶⁸Ni using T-REX and MINIBALL @ REX-ISOLDE was successful
- Population of excited states up to 6 MeV
- Extended new spectroscopic information is already deduced

- Analysis on spectroscopic factors has to be finalized
- Comparison with theoretical shell model calculations

Introduction	Beam production	Experimental setup	First results	Conclusions
Conclusio	ons and outle	ook		

- The first one-neutron transfer experiment around ⁶⁸Ni using T-REX and MINIBALL @ REX-ISOLDE was successful
- Population of excited states up to 6 MeV
- Extended new spectroscopic information is already deduced

- Analysis on spectroscopic factors has to be finalized
- Comparison with theoretical shell model calculations

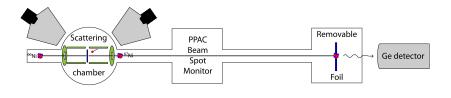
Introduction	Beam production	Experimental setup	First results	Conclusions
Conclusio	ons and outle	ook		

- The first one-neutron transfer experiment around ⁶⁸Ni using T-REX and MINIBALL @ REX-ISOLDE was successful
- Population of excited states up to 6 MeV
- Extended new spectroscopic information is already deduced
- Analysis on spectroscopic factors has to be finalized
- Comparison with theoretical shell model calculations

Introduction	Beam production	Experimental setup	First results	Conclusions
Conclusio	ons and outle	ook		

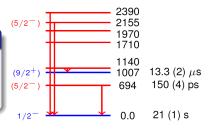
- The first one-neutron transfer experiment around ⁶⁸Ni using T-REX and MINIBALL @ REX-ISOLDE was successful
- Population of excited states up to 6 MeV
- Extended new spectroscopic information is already deduced

- Analysis on spectroscopic factors has to be finalized
- Comparison with theoretical shell model calculations

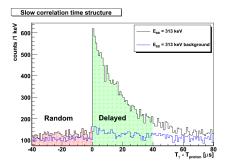

Introduction	Beam production	Experimental setup	First results	Conclusions
The 10 4		tion.		

The IS-469 Collaboration

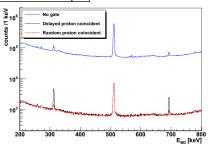
- University of Ioannina: N. Patronis, A. Pakou
- IKS, K.U. Leuven: J. Diriken, I.G. Darby, H. De Witte, J. Elseviers, M. Huyse, R. Raabe, T. Roger, P. Van Duppen
- TUM, München: K. Wimmer, V. Bildstein, R. Krücken
- IKP, Darmstadt: Th. Kröll
- CERN, ISOLDE: J. Pakarinen, J. Van de Walle, D. Voulot, F. Wenander
- CNSM, Orsay: G. Georgiev, C. Sotty, H. Tornqvist
- IKP, Cologne: A. Blazhev, Ch. Fransen, H. Hess, J. Jolie, P. Reiter, M. Seidlitz, N. Warr


- Democritos, Athens: T.J. Mertzimekis
- UWS, Paisley: A. Andreyev, R. Orlandi
- Comenius University Bratislava: A. Antalic

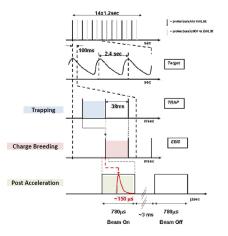
The slow coincidence setup



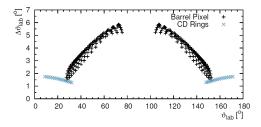
Why slow correlation?

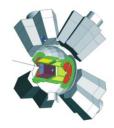

- correlation of longer time-scale (40 μs) with protons
- identify population of (9/2⁺) isomeric state

Slow correlation: Beam Dump γ -ray spectrum



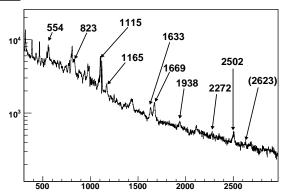
Slow correlation analysis


< □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □


REX-ISOLDE beam time structure

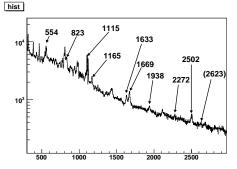
Running conditions

- CD₂ Target thickness: only 100 µgr/cm²!
- Beam purity > 95 %
- Beam intensity > 10⁶ pps %



Study of other reaction channels

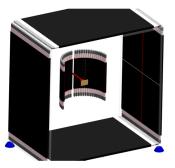
hist

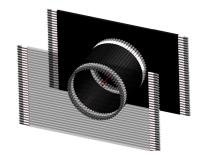


Appendix

Extra slides

⁶⁶Ni(d,n)⁶⁷Cu




◆□▶ ◆□▶ ◆□▶ ◆□▶ ◆□▶ ◆□▶ ◆□▶

Appendix 000000

Extra slides

Large Area Neutron Detection Setup

< □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □

AIP Conf. Proc.: 1099, 790 (2009)